k-means聚类的缺点

转自http://www.cnblogs.com/emanlee/archive/2012/03/06/2381617.html

Similar to other algorithm, K-mean clustering has many weaknesses:

 

1 When the numbers of data are not so many, initial grouping will determine the cluster significantly.  当数据数量不是足够大时,初始化分组很大程度上决定了聚类,影响聚类结果。
2 The number of cluster, K, must be determined before hand.  要事先指定K的值。
3 We never know the real cluster, using the same data, if it is inputted in a different order may produce different cluster if the number of data is a few. 数据数量不多时,输入的数据的顺序不同会导致结果不同。
4 Sensitive to initial condition. Different initial condition may produce different result of cluster. The algorithm may be trapped in the local optimum. 对初始化条件敏感。
5 We never know which attribute contributes more to the grouping process since we assume that each attribute has the same weight. 无法确定哪个属性对聚类的贡献更大。
6 weakness of arithmetic mean is not robust to outliers. Very far data from the centroid may pull the centroid away from the real one. 使用算术平均值对outlier不鲁棒。
7 The result is circular cluster shape because based on distance.  因为基于距离,故结果是圆形的聚类形状。

 

One way to overcome those weaknesses is to use K-mean clustering only if there are available many data. To overcome outliers problem, we can use median instead of mean.  克服缺点的方法: 使用尽量多的数据;使用中位数代替均值来克服outlier的问题。

Some people pointed out that K means clustering cannot be used for other type of data rather than quantitative data. This is not true! See how you can use multivariate data up to n dimensions (even mixed data type) here. The key to use other type of dissimilarity is in the distance matrix.


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值