Creating a noSql database, what is the best source code to look at?

本文探讨了构建一款用于存储大量嵌套评论的NoSQL数据库的设计思路和技术需求,包括自动/手动分片、全文搜索等功能,并寻求现有代码及算法的学习资源。

I have always wanted a nosql database that was purpose built for storing large volumes of nested/threaded comments. Implementation would probably be done in java because that is what I am best at. I really like how ElasticSearch is dead simple to set up a cluster and throw data into it, I want my product to share those same qualities. Here are the features I have in mind:

1) auto/manual sharding across clusters
2) auto/manual indexing across clusters
3) full text search (probably via lucene or elasticSearch)
4) REST/JSON API
5) retrieve any comment by ID
6) comments can be retrieved with or without child nodes
7) comment trees can be retrieved with a specified depth
8) comment tree can be retrieved can be filtered by time or rank
9) entire comment trees can be re-parented.

What I'm looking for are exceptional pieces of code or specific algorithms that I can study before digging into this project. Can anyone suggest a few places to get started?

share improve this question
 
1 
Much of this will be a feature of the app you build rather than the database you use. The rest (possibly excluding full-text search), any existing NoSQL database should be able to handle. Why exactly can't you use an already existing DB? –   cHao  Aug 8 '12 at 3:30 
 
Do you want to write your own, or do you want to use one that you like and that is written in Java? –   Edmon Aug 8 '12 at 3:30
 
About 80% of the reason for wanting to write my own is for fun, the other 20% is because I have never really been fully satisfied with the traditional solutions for storing nested comments. I think it would be cool to be able to fire up a cluster to store/search reddit scale volumes of comments. –   bostonBob  Aug 8 '12 at 3:52

1 Answer

Since your tag in a question indicates Java, I suggest looking into OrientDB.

Here is a source code:

http://code.google.com/p/orient/source/browse/

and the architecture:

http://code.google.com/p/orient/wiki/Presentations

for the big boy stuff (clustering, hyper scaling take a look at HBase and Accumulo):

http://hbase.apache.org/source-repository.html

http://accumulo.apache.org/source.html

Hope this helps.
Edmon

share improve this answer
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值