机器学习之决策树

1.决策树原理

  • 决策树:树形结构流程图(漏斗型),模型本身包含一些列逻辑决策。数据分类从根节点开始,根据特征值遍历树上的各个决策节点。

  • 几乎可应用于任何类型的数据建模,且性能不错。但当数据有大量多层次的名义特征或者大量的数值特征时,可能会生成一个过于复杂的决策树。

  • 递归划分/分而治之:利用特征值将数据分解成具有相似类的较小的子集。

  • 过程:从代表整个数据集的根节点开始,选择最能预测目标类的特征,然后将案例划分到该特征不同值的组中(即第一组树枝),继续分而治之其他节点,每次选择最佳的候选特征,直到节点上所有案例都属于同一类,或者没有其他的特征来区分案例,或者决策树已经达到了预先定义的大小。

  • 由于数据可一直划分(直到组内的特征没有区别),所以决策树容易过拟合,给出过于具体细节的决策。

  • C5.0决策树算法:C4.5/ID3(迭代二叉树3代)算法的改进:

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值