机器学习之-懒惰学习K近邻(kNN)

1.理解使用KNN进行分类

KNN特点

  • 近邻分类器:一种懒惰学习器,即把未标记的案例归类为与它们最相似的带有标记的案例所在的类。当一个概念很难定义,但你看到它时知道它是什么,就适合用KNN分类。
  • KNN优点:简单有效;数据分布无要求;训练快
  • KNN缺点:不产生模型(发现特征间关系能力有限);分类慢;内存大;名义变量和缺失值需要处理
  • KNN算法将特征处理为一个多维特征空间内的坐标。如标记配料为水果、蔬菜和蛋白3种类型,每种配料有脆度crunshiness和甜度sweetness 2个维度特征,体现在坐标内就是x轴、y轴。

KNN步骤

1)计算距离

距离函数度量:如欧氏距离(最短的直线距离),曼哈顿距离(类似城市街区路线)。欧氏距离公式:

p,q为比较的案例,n为特征

假设我们已知葡萄、绿豆、坚果、

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值