import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib import rnn # 载入数据集 mnist = input_data.read_data_sets('F:\Pycharm projection\MNIST_data', one_hot=True) # 输入图片28*28 n_inputs = 28 # 输入一行,一行有28个数据 max_time = 28 # 一共28行 lstm_size =100 # 隐层单元 n_classes =10 # 10个分类 batch_size =50 # 每批次50个样本 n_batch = mnist.train.num_examples//batch_size # 计算一共有多少个批次 # 这里的none是表示第一个维度可以是任意的长度 x = tf.placeholder(tf.float32,[None,784]) # 正确的标签 y = tf.placeholder(tf.float32,[None,10]) # 初始化权值 weights = tf.Variable(tf.truncated_normal([lstm_size,n_classes],stddev=0.1)) # 初始化偏置值 biases = tf.Variable(tf.constant(0.1,shape=[n_classes])) # 定义RNN网络 def RNN(X,weights,biases): # inputs=[batch_size, max_time, n_inputs] inputs = tf.reshape(X, [-1, max_time, n_inputs]) # 定义LSTM基本CELL lstm_cell = rnn.BasicLSTMCell(lstm_size) # final_state[0]是cell state # final_state[1]是hidden_state outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32) results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases) return results # 计算RNN的返回结果 prediction = RNN(x, weights, biases) # 损失函数 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # 使用AdamOptimizer进行优化 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置 # 求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型 # 初始化 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(6): for batch in range(n_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
出错提示:File "F:/Pycharm projection/tensorflowbasic/LSTM.py", line 30, in RNN
lstm_cell = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)AttributeError: module 'tensorflow.contrib.rnn' has no attribute 'core_rnn_cell'
解决方法来自:
《炼数成金》.第七课 递归神经网络LSTM的讲解,以及LSTM网络的使用学习笔记
运行结果:Iter 0, Testing Accuracy= 0.7668Iter 1, Testing Accuracy= 0.8915
Iter 2, Testing Accuracy= 0.9045
Iter 3, Testing Accuracy= 0.9087
Iter 4, Testing Accuracy= 0.9301
Iter 5, Testing Accuracy= 0.9334