CoreGraphics 学习摘记之 Transforms

本文深入探讨了Quartz2D中的坐标转换技术,包括用户空间与设备空间的区别,如何通过平移、旋转、缩放等操作来实现坐标转换,并提供了关键函数的使用示例。

The Quartz 2D drawing model defines two completely separate coordinate spaces: user space, which represents the document page, and device space, which represents the native resolution of a device. User space coordinates are floating-point numbers that are unrelated to the resolution of pixels in device space. When you want to print or display your document, Quartz maps user space coordinates to device space coordinates.

You can modify the default user space by operating on the current transformation matrix, or CTM. 

Modifying the Current Transformation Matrix

Before you transform the CTM, you need to save the graphics state so that you can restore it after drawing.

Translation moves the origin of the coordinate space by the amount you specify for the x and y axes. You call the function CGContextTranslateCTM to modify the x and y coordinates of each point by a specified amount. Figure 5-3 shows an image translated by 100 units in the x-axis and 50 units in the y-axis, using the following line of code:

CGContextTranslateCTM (myContext, 100, 50);
Figure 5-3  A translated image A translated image

Rotation moves the coordinate space by the angle you specify. You call the function CGContextRotateCTM to specify the rotation angle, in radians. Figure 5-4 shows an image rotated by –45 degrees about the origin, which is the lower left of the window, using the following line of code:

CGContextRotateCTM (myContext, radians(–45.));

The image is clipped because the rotation moved part of the image to a location outside the context. You need to specify the rotation angle in radians.

It’s useful to write a radians routine if you plan to perform many rotations.

#include <math.h>
static inline double radians (double degrees) {return degrees * M_PI/180;}
Figure 5-4  A rotated image A rotated image

Scaling changes the scale of the coordinate space by the x and y factors you specify, effectively stretching or shrinking the image. The magnitude of the x and y factors governs whether the new coordinates are larger or smaller than the original. In addition, by making the x factor negative, you can flip the coordinates along the x-axis; similarly, you can flip coordinates horizontally, along the y-axis, by making the y factor negative. You call the function CGContextScaleCTM to specify the x and y scaling factors. Figure 5-5 shows an image whose x values are scaled by .5 and whose y values are scaled by .75, using the following line of code:

CGContextScaleCTM (myContext, .5, .75);
Figure 5-5  A scaled image A scaled image

Concatenation combines two matrices by multiplying them together. You can concatenate several matrices to form a single matrix that contains the cumulative effects of the matrices. You call the function CGContextConcatCTM to combine the CTM with an affine transform. Affine transforms, and the functions that create them, are discussed in “Creating Affine Transforms.”

Another way to achieve a cumulative effect is to perform two or more transformations without restoring the graphics state between transformation calls. Figure 5-6 shows an image that results from translating an image and then rotating it, using the following lines of code:

CGContextTranslateCTM (myContext, w,h);
CGContextRotateCTM (myContext, radians(-180.));
Figure 5-6  An image that is translated and rotated An image that is translated and rotated

Creating Affine Transforms

The affine transform functions available in Quartz operate on matrices, not on the CTM. You can use these functions to construct a matrix that you later apply to the CTM by calling the function  CGContextConcatCTM
Table 5-1  Affine transform functions for translation, rotation, and scaling

Function

Use

CGAffineTransformMakeTranslation

To construct a new translation matrix from x and y values that specify how much to move the origin.

CGAffineTransformTranslate

To apply a translation operation to an existing affine transform.

CGAffineTransformMakeRotation

To construct a new rotation matrix from a value that specifies in radians how much to rotate the coordinate system.

CGAffineTransformRotate

To apply a rotation operation to an existing affine transform.

CGAffineTransformMakeScale

To construct a new scaling matrix from x and y values that specify how much to stretch or shrink coordinates.

CGAffineTransformScale

To apply a scaling operation to an existing affine transform.

Quartz also provides an affine transform function that inverts a matrix, CGAffineTransformInvert. Inversion is generally used to provide reverse transformation of points within transformed objects. Inversion can be useful when you need to recover a value that has been transformed by a matrix: Invert the matrix, and multiply the value by the inverted matrix, and the result is the original value. You usually don’t need to invert transforms because you can reverse the effects of transforming the CTM by saving and restoring the graphics state.

In some situations you might not want to transform the entire space, but just a point or a size. You operate on a CGPoint structure by calling the function CGPointApplyAffineTransform. You operate on a CGSize structure by calling the function CGSizeApplyAffineTransform. You can operate on a CGRect structure by calling the function CGRectApplyAffineTransform

Evaluating Affine Transforms

You can determine whether one affine transform is equal to another by calling the function  CGAffineTransformEqualToTransform .  The function CGAffineTransformIsIdentity is a useful function for checking whether a transform is the identity transform. The identity transform performs no translation, scaling, or rotation. 

Getting the User to Device Space Transform

Quartz provides a number of convenience functions to transform the following geometries between user space and device space. You might find these functions easier to use than applying the affine transform returned from the function CGContextGetUserSpaceToDeviceSpaceTransform.



**高校专业实习管理平台设计与实现** 本设计项目旨在构建一个服务于高等院校专业实习环节的综合性管理平台。该系统采用当前主流的Web开发架构,基于Python编程语言,结合Django后端框架与Vue.js前端框架进行开发,实现了前后端逻辑的分离。数据存储层选用广泛应用的MySQL关系型数据库,确保了系统的稳定性和数据处理的效率。 平台设计了多角色协同工作的管理模型,具体包括系统管理员、院系负责人、指导教师、实习单位对接人以及参与实习的学生。各角色依据权限访问不同的功能模块,共同构成完整的实习管理流程。核心功能模块涵盖:基础信息管理(如院系、专业、人员信息)、实习过程管理(包括实习公告发布、实习内容规划、实习申请与安排)、双向反馈机制(单位评价与学生反馈)、实习支持与保障、以及贯穿始终的成绩评定与综合成绩管理。 在技术实现层面,后端服务依托Django框架的高效与安全性构建业务逻辑;前端界面则利用Vue.js的组件化特性与LayUI的样式库,致力于提供清晰、友好的用户交互体验。数据库设计充分考虑了实习管理业务的实体关系与数据一致性要求,并保留了未来功能扩展的灵活性。 整个系统遵循规范的软件开发流程,从需求分析、系统设计、编码实现到测试验证,均进行了多轮迭代与优化,力求在功能完备性、系统性能及用户使用体验方面达到较高标准。 **核心术语**:实习管理平台;Django框架;MySQL数据库;Vue.js前端;Python语言。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值