一个stage是由一组相同运算的task组成,他们分别计算不同的partition,stage的提交实际是向调度器提交一组包含相同计算的task,这里调度器的名字是TaskScheduler,其调度单位是taskset,stage在提交是使用了递归算法,会先提交没有parent stage的stage,代码如下:
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing == Nil) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
//这里会提交stage至TaskScheduler
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id)
}
}
stage类型分为shuffleMap的和result的,stage的rdd会被序列化,对于ShuffleMapTask会序列化rdd、shuffleDep,对于ResultTask会序列化rdd和func,然后序列化的task会被广播到各节点,等待执行指令。各task会以taskset的形式打包到一起供TaskScheduler调度 private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// 数据结构清理,马上要运行,挂起的task先清理掉
stage.pendingTasks.clear()
// First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = {
if (stage.isShuffleMap) {
(0 until stage.numPartitions).filter(id => stage.outputLocs(id) == Nil)
} else {
val job = stage.resultOfJob.get
(0 until job.numPartitions).filter(id => !job.finished(id))
}
}
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" pool
null
}
runningStages += stage
// SparkListenerStageSubmitted should be posted before testing whether tasks are
// serializable. If tasks are not serializable, a SparkListenerStageCompleted event
// will be posted, which should always come after a corresponding SparkListenerStageSubmitted
// event.
stage.latestInfo = StageInfo.fromStage(stage, Some(partitionsToCompute.size))
outputCommitCoordinator.stageStart(stage.id)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
// TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
//序列化task,并广播到各节点
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] =
if (stage.isShuffleMap) {
closureSerializer.serialize((stage.rdd, stage.shuffleDep.get) : AnyRef).array()
} else {
closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func) : AnyRef).array()
}
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
.....
}
//计算task集合创建taskset,传递给scheduler调度
val tasks: Seq[Task[_]] = if (stage.isShuffleMap) {
partitionsToCompute.map { id =>
val locs = getPreferredLocs(stage.rdd, id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, taskBinary, part, locs)
}
} else {
val job = stage.resultOfJob.get
partitionsToCompute.map { id =>
val p: Int = job.partitions(id)
val part = stage.rdd.partitions(p)
val locs = getPreferredLocs(stage.rdd, p)
new ResultTask(stage.id, taskBinary, part, locs, id)
}
}
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingTasks ++= tasks
logDebug("New pending tasks: " + stage.pendingTasks)
//注意,这里开始调度
taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
logDebug("Stage " + stage + " is actually done; %b %d %d".format(
stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions))
}
}
task的触发实际是通过akka向woker的actor发送了一个指令
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = createTaskSetManager(taskSet, maxTaskFailures)
activeTaskSets(taskSet.id) = manager
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
}
hasReceivedTask = true
}
backend.reviveOffers()
}<span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);"> </span>
本地模式的运行逻辑如下,具体的处理逻辑位于LocalBAckend中 override def reviveOffers() {
localActor ! ReviveOffers //发送指令开始执行
}<span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);"> </span>
def reviveOffers() {
val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
val tasks = scheduler.resourceOffers(offers).flatten
for (task <- tasks) {
//更新资源的统计信息并发送launchTask指令
freeCores -= scheduler.CPUS_PER_TASK
executor.launchTask(executorBackend, taskId = task.taskId, attemptNumber = task.attemptNumber,
task.name, task.serializedTask)
}
if (tasks.isEmpty && scheduler.activeTaskSets.nonEmpty) {
// Try to reviveOffer after 1 second, because scheduler may wait for locality timeout
context.system.scheduler.scheduleOnce(1000 millis, self, ReviveOffers)
}
}<span style="font-family: 'Courier New'; background-color: rgb(255, 255, 255);"> </span>
如果是集群模式,稍微复杂些,会由CoarseGrainedSchedulerBackend来接受执行指令,内部封装DriverActor def makeOffers() {
launchTasks(scheduler.resourceOffers(executorDataMap.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq))
}
// Launch tasks returned by a set of resource offers
def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val ser = SparkEnv.get.closureSerializer.newInstance()
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
val taskSetId = scheduler.taskIdToTaskSetId(task.taskId)
scheduler.activeTaskSets.get(taskSetId).foreach { taskSet =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
"spark.akka.frameSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
AkkaUtils.reservedSizeBytes)
taskSet.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
//向executor发送task启动指令
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
executorData.executorActor ! LaunchTask(new SerializableBuffer(serializedTask))
}
}
}