AC自动机算法详解(入门)

AC自动机算法是多模匹配的一种高效解决方案,源于1975年的贝尔实验室。该算法结合了字典树(Trie)和KMP算法的思想,通过失败指针在模式匹配时快速跳转,避免重复匹配。在给定的单词集合和文本字符串中,AC自动机可以高效地找出所有出现的单词。这里以5个单词和一个字符串为例,详细介绍了AC自动机的数据结构构建、查询过程及模式匹配流程,展示了如何利用AC自动机找到匹配的单词并计算数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AC自动机算法详解

首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。AC自动机算法分为3步:构造一棵Trie树,构造失败指针和模式匹配过程。
如果你对KMP算法和了解的话,应该知道KMP算法中的next函数(shift函数或者fail函数)是干什么用的。KMP中我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符,当A[i+1]≠B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配,而next函数恰恰记录了这个j应该调整到的位置。同样AC自动机的失败指针具有同样的功能,也就是说当我们的模式串在Tire上进行匹配时,如果与当前节点的关键字不能继续匹配的时候,就应该去当前节点的失败指针所指向的节点继续进行匹配。
看下面这个例子:给定5个单词:say she shr he her,然后给定一个字符串yasherhs。问一共有多少单词在这个字符串中出现过。我们先规定一下AC自动机所需要的一些数据结构,方便接下去的编程。

const int kind = 26; 
struct node
{  
    node *fail;       //失败指针
    node *next[kind]; //Tire每个节点的个子节点(最多个字母)
    int count;        //是否为该单词的最后一个节点
    node()
    {           //构造函数初始化
        fail=NULL; 
        count=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值