java虚拟机-内存区分代

本文详细介绍了Java内存管理的关键机制,包括源码编译过程、类加载机制及执行机制。重点讲解了垃圾回收策略,如分代回收及并发回收,并探讨了年轻代与年老代的区别。

1.Java源码编译机制

结构信息,元数据,方法信息

Java代码编译

Java字节码的执行

2.类加载机制

 

classloader及其子类

bc   jre.lib.rt.jar

ec   jre.lib.ext.*.jar

ac   classpath指定jar

cc   自定义c

3.类执行机制

基于堆栈的虚拟机,一个线程一个堆栈。已帧为单位保存线程。jvm以帧为单位进行出入栈。

帧通常用来存放数据和部分结果,通常还有执行动态链接,方法返回值和异常调度。

       在方法调用的同一时刻,一个新帧就会随之创建,当方法执行完成的时候(无论这个方法是正常完成还是意外完成),帧都会随之销毁。在线程创建帧的时候,Java虚拟机栈就会分配内存空间给帧。每个帧都有自己的局部变量表、操作数栈、当前方法对应类的运行时常量池的引用。

     当只有一个方法正在执行并且只有一个帧的时候,可以根据线程调配随时激活。此时,这个帧称为当前帧,并且这个帧对应的方法称为当前方法,这个方法所在的类称为当前类。对局部变量表和操作数栈的操作通常都会引用当前帧。

      如果方法调用其他方法或者方法执行完成时,方法的帧会随之销毁。当方法把控制权转移到新方法的时候,新方法就会执行,在执行的同时生成一个新的帧,新帧会切换成当前帧。对于方法返回,当前帧会返回帧对应方法的执行结果。更有可能,会返回到前一帧。当前一帧变成当前帧的时候,之前的当前帧就会销毁。

      ==注意:线程创建的帧是线程的私有空间,其他线程均不能引用==

问题1. 如何解决同时存在的对象创建和对象回收问题

答:垃圾回收线程是回收内存的,而程序运行线程则是消耗(或分配)内存的,一个回收内存,一个分配内存,从这点看,两者是矛盾的。因此,在现有的垃圾回收方式中,要进行垃圾回收前,一般都需要暂停整个应用(即:暂停内存的分配),然后进行垃圾回收,回收完成后再继续应用。这种实现方式是最直接,而且最有效的解决二者矛盾的方式。

       但是这种方式有一个很明显的弊端,就是当堆空间持续增大时,垃圾回收的时间也将会相应的持续增大,相应应用暂停的时间也会相应的增大。一些相应时间要求很高的应用,比如最大暂停时间要求是几百毫秒,那么当堆空间大于几个G时,就很有可能超过这个限制,在这种情况下,垃圾回收将会成为系统运行的一个瓶颈。为解决这种矛盾,有了并发垃圾回收算法,使用这种算法,垃圾回收线程与程序运行线程同时运行。在这种方式下,解决了暂停的问题,但是因为需要在新生成对象的同时又要回收对象,算法复杂性会大大增加,系统的处理能力也会相应降低,同时,“碎片”问题将会比较难解决,以后研究的重点!!!!!!。 

问题2 为什么要分代

答:分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同声明周期的对象可以采取不同的收集方式,以便提高回收效率。

        在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

        试想,在不进行对象存活时间区分的情况下,每次垃圾回收都是对整个堆空间进行回收,花费时间相对会长,同时,因为每次回收都需要遍历所有存活对象,但实际上,对于生命周期长的对象而言,这种遍历是没有效果的,因为可能进行了很多次遍历,但是它们依旧存在。因此,分代垃圾回收采用分治的思想,进行代的划分,把不同生命周期的对象放在不同代上,不同代上采用最适合它的垃圾回收方式进行回收。

        虚拟机中共划分了三个代:年轻代(Young Generation)、年老代(Old Generation)和持久代(Permanent Generation)。

问题3  如何分代

答:其中持久代主要存放的是java类的类信息,与垃圾收集要收集的java对象关系不大。年轻代和年老代的划分是对垃圾收集影响比较大的。

       年轻代:

       所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。年轻代分为三个区。一个Eden区,两个Survivor区(一般而言)。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活将被复制到另外一个Survivor区,当这个Survivor区也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时存在从Eden复制过来的对象和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor区过来的对象。而且,Survivor区总有一个是空的。同时,根据程序需要,Survivor区是可以配置为多个的(多于两个),这样可以增加对象在年轻代中的存在时间,减少被放到年老代的可能。

       年老代:

       在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

       持久代:

      用于存放静态文件,如java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate等,在这种时候需要设置一个比较大的持久空间来存放这些运行过程中新增的类。持久代大小通过 -XX:MaxPermSize = <N> 进行设置。

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab码实现)内容概要:本文围绕“需求响应动态冰蓄冷系统与需求响应策略的优化研究”展开,基于Matlab码实现,重点探讨了冰蓄冷系统在电力需求响应背景下的动态建模与优化调度策略。研究结合实际电力负荷与电价信号,构建系统能耗模型,利用优化算法对冰蓄冷系统的运行策略进行求解,旨在降低用电成本、平衡电网负荷,并提升能源利用效率。文中还提及该研究为博士论文复现,涉及系统建模、优化算法应用与仿真验证等关键技术环节,配套提供了完整的Matlab码资源。; 适合人群:具备一定电力系统、能源管理或优化算法基础,从事科研或工程应用的研究生、高校教师及企业研发人员,尤其适合开展需求响应、综合能源系统优化等相关课题研究的人员。; 使用场景及目标:①复现博士论文中的冰蓄冷系统需求响应优化模型;②学习Matlab在能源系统建模与优化中的具体实现方法;③掌握需求响应策略的设计思路与仿真验证流程,服务于科研项目、论文写作或实际工程方案设计。; 阅读建议:建议结合提供的Matlab码逐模块分析,重点关注系统建模逻辑与优化算法的实现细节,按文档目录顺序系统学习,并尝试调整参数进行仿真对比,以深入理解不同需求响应策略的效果差异。
综合能源系统零碳优化调度研究(Matlab码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模与仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab码与网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与模型精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

良之才-小良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值