1、生产者API
①启动hadoop集群、zookeeper集群、kafka集群,接着再启动一个kafka消费者。
$ bin/kafka-console-consumer.sh --zookeeper s101:2181 --topic first //启动Kafka消费者
②导入pom依赖:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.12</artifactId>
<version>0.11.0.0</version>
</dependency>
③编程
package com.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
/**
* @Author: Dazhou Li
* @Description:
* @CreateDate: 2019/1/17 0017 21:54
*/
public class CustomerProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "s101:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<String ,String>(props);
for (int i = 0; i < 10; i++) {
producer.send(new ProducerRecord<String, String>("first",String.valueOf(i)));
}
producer.close();
}
}
2、带回调函数的生产者:
作用:可知道数据的分区、偏移量等信息。
代码:
package com.producer;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import java.util.Properties;
/**
* @Author: Dazhou Li
* @Description:
* @CreateDate: 2019/1/17 0017 21:54
*/
public class CustomerProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "s101:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<String ,String>(props);
for (int i = 0; i < 10; i++) { //回调函数写在这里
producer.send(new ProducerRecord<String, String>("second", String.valueOf(i)), new Callback() {
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if (e==null){ //发送数据成功,可打印分区、偏移量等信息
System.out.println(recordMetadata.partition()+"--"+recordMetadata.offset());
}else { //发送数据失败
System.out.println("打印失败");
}
}
});
}
producer.close();
}
}
生产者生产数据,均匀的放置数据,第0个分区放置第一条数据,第1个分区放置第二条数据。。。
消费者消费时,是一个分区一个分区的读取数据,先读完一个分区,再读另一个分区。
3、自定义分区的生产者:
重新写一个类CustomerPartitioner实现partitioner类,重写里面的方法:partition、close、configure。
close()方法:关闭资源;
configure()方法:如果partition()方法中用到某些配置文件或者修改,这个方法可以读取配置文件。
在CustomerProducer.java中添加
//添加自定义分区生产者的配置
props.put("partitioner.class","com.producer.CustomerPartitioner");
package com.producer;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import java.util.Map;
/**
* @Author: Dazhou Li
* @Description:
* @CreateDate: 2019/1/20 0020 20:48
*/
public class CustomerPartitioner implements Partitioner {
private Map configMap=null;
public int partition(String s, Object o, byte[] bytes, Object o1, byte[] bytes1, Cluster cluster) {
//现在是只往0分区写
return 0;
}
public void close() {
}
public void configure(Map<String, ?> map) {
configMap=map;
}
}
package com.producer;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import java.util.Properties;
/**
* @Author: Dazhou Li
* @Description:
* @CreateDate: 2019/1/17 0017 21:54
*/
public class CustomerProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "s101:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//添加自定义分区生产者的配置
props.put("partitioner.class","com.producer.CustomerPartitioner");
KafkaProducer<String, String> producer = new KafkaProducer<String ,String>(props);
for (int i = 0; i < 10; i++) {
producer.send(new ProducerRecord<String, String>("second", String.valueOf(i)), new Callback() {
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if (e==null){ //发送数据成功,可打印分区、偏移量等信息
System.out.println(recordMetadata.partition()+"--"+recordMetadata.offset());
}else { //发送数据失败
System.out.println("打印失败");
}
}
});
}
producer.close();
}
}
4、kafka高级消费者
package com.consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
/**
* @Author: Dazhou Li
* @Description:
* @CreateDate: 2019/1/20 0020 21:24
*/
public class CustomConsumer {
public static void main(String[] args) {
Properties pros = new Properties();
//kafka集群
pros.put("bootstrap.servers", "s101:9092");
//消费者组id
pros.put("group.id", "test");
//设置自动提交offset
pros.put("enable.auto.commit", "true");
//提交延时
pros.put("auto.commit.intervals.ms", "1000");
//key、value反序列化
pros.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
pros.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
//创建消费者对象
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pros);
//指定topic
consumer.subscribe(Arrays.asList("second", "first", "third"));
while (true) {
//获取数据
ConsumerRecords<String, String> consumerRecords = consumer.poll(100);
for (ConsumerRecord<String, String> record : consumerRecords) {
System.out.println(record.topic() + "--" + record.partition() + "--" + record.value());
}
}
}
}