For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000
题意:
给定一个四位的数字,写出该数字的黑洞过程
分析:
要求四位数字,注意在将数拆成各位的时候,注意不是求所有的为,因为有的数开始是0,所以只要四位,不然第二个,第三个测试点过不了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <set>
#include <map>
using namespace std;
int Min(int *d)
{
int sum = 0;
for(int i = 0;i < 4;i++)
sum = sum*10+d[i];
return sum;
}
int Max(int *d)
{
int sum = 0;
for(int i = 3;i >= 0;i--)
sum = sum*10+d[i];
return sum;
}
int main()
{
int n;
cin >> n;
while(1)
{
int d[4];
int g = 0;
for(int i = 0;i < 4;i++)
{
d[g++] = n%10;
n/=10;
}
sort(d,d+4);
int maxn = Max(d);
int minn = Min(d);
int mul = maxn - minn;
printf("%04d - %04d = %04d\n",maxn,minn,mul);
if(mul == 0||mul == 6174)
break;
n = mul;
}
return 0;
}
下面给出大神的超级短的代码:
#include <iostream>
#include <algorithm>
using namespace std;
bool cmp(char a, char b) {return a > b;}
int main() {
string s;
cin >> s;
s.insert(0, 4 - s.length(), '0');
do {
string a = s, b = s;
sort(a.begin(), a.end(), cmp);
sort(b.begin(), b.end());
int result = stoi(a) - stoi(b);
s = to_string(result);
s.insert(0, 4 - s.length(), '0');
cout << a << " - " << b << " = " << s << endl;
} while (s != "6174" && s != "0000");
return 0;
}
本文介绍了一个数学现象——Kaprekar常数6174的黑洞效应,对于任意一个四位数(所有数字不完全相同),通过特定的操作步骤,最终都将收敛到6174这个神秘的数字上。文章提供了实现这一过程的C++代码示例。
1619

被折叠的 条评论
为什么被折叠?



