一道很有趣的题目,居然写了三种做法。可以用类似拓扑排序的思想,先把入度为一的点入队,每次pop出2个,并且把图中所有指向第二个点的边删掉.如果删掉边的点入度为一了则入队.
#include <vector>
#include <queue>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define FILL(x) memset(x, 0, sizeof(x));
#define PB push_back
const int M = 10010;
int main()
{
int T;
cin>>T;
while(T--) {
vector<int> g[M];
int f, t;
int nn;
int deg[M];
FILL(deg);
scanf("%d", &nn);
for (int i=0; i<nn-1; i++) {
scanf("%d%d", &f, &t);
g[f].PB(t);
g[t].PB(f);
deg[f] ++;
deg[t] ++;
}
queue<int> q;
bool vis[M];
FILL(vis);
for (int i=1; i<=nn; i++) {
if (deg[i] == 1)
q.push(i);
}
while(!q.empty()) {
int f = q.front(); q.pop();
if (deg[f] == 1 && !vis[f]) {
int t = g[f][0];
vis[t] = vis[f] = 1;
g[f].clear();
for (int i=0; i<g[t].size(); i++) {
int v = g[t][i];
for (int j=0; j<g[v].size(); j++) {
int x = g[v][j];
if (x == t) {
g[v].erase(g[v].begin() + j);
deg[v] --;
}
}
if (deg[v] == 1)
q.push(v);
}
}
}
bool flag = 1;
for (int i=1; i<=nn; i++) {
if (vis[i] != 1)
flag = 0;
}
if (flag) cout<<"Yes\n";
else cout<<"No\n";
}
}
好吧,看错了,其实是水题. 一次dfs
#include <vector>
#include <queue>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int M = 10010;
int vis[M];
vector<int> g[M];
int dfs(int f);
int main()
{
int T;
cin>>T;
while(T--) {
for (int i=0; i<M; i++) {
g[i].clear();
}
int f, t, nn;
scanf("%d", &nn);
memset(vis, 0, sizeof(vis));
for (int i=0; i<nn-1; i++) {
scanf("%d%d", &f, &t);
g[f].push_back(t);
g[t].push_back(f);
}
if (dfs(1) == 0)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
}
int dfs(int f) {
vis[f] = 1;
int cnt = 0;
int flag = 0;
for (int i=0; i<g[f].size(); i++) {
int t=g[f][i];
if (!vis[t]) {
flag ++;
cnt += dfs(t);
}
}
if (flag == 0) return 1; // leaf
if (cnt >= 2) return 2;
else if (cnt == 1) return 0;
else if (cnt == 0) return 1;
}
匈牙利算法
#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>
using namespace std;
#ifdef DEBUG
#define cvar(x) cerr << "<" << #x << ": " << x << ">"
#define evar(x) cvar (x) << endl
#define debug(...) printf( __VA_ARGS__)
template<class T> void DISP(const char *s, T x, int n) {cerr << "[" << s << ": "; for (int i = 0; i < n; ++i) cerr << x[i] << " "; cerr << "]" << endl;}
#define disp(x,n) DISP(#x " to " #n, x, n)
#else
#define debug(...)
#define cvar(...) ({})
#define evar(...) ({})
#define disp(...) ({})
#endif
#define FILL(x) memset(x, 0, sizeof(x));
#define PB push_back
template<class T> inline T cub(T a){return a*a*a;}
template <typename T> T gcd(T x, T y) {for (T t; x; t = x, x = y % x, y = t); return y; }
typedef long long int64;
const int INF = 0x3f3f3f3f;
const int M = 10010;
const int MOD = int(1e9) + 7;
const double EPS = 1E-9;
const double PI = acos(-1.0); //M_PI;
const int dx[] = {-1, 0, 1, 0};
const int dy[] = {0, 1, 0, -1};
int vis[M], mat[M];
vector<int> g[M];
bool find(int i);
int main()
{
#ifdef LOCAL
freopen("data.in","r",stdin);
//freopen("data.out", "w", stdout):
#endif
int T;
cin>>T;
while(T--) {
for (int i=0; i<M; i++) {
g[i].clear();
}
int f, t;
int nn;
scanf("%d", &nn);
FILL(vis);
FILL(mat);
for (int i=0; i<nn-1; i++) {
scanf("%d%d", &f, &t);
g[f].PB(t);
g[t].PB(f);
}
int cnt=0;
for (int i=1; i<=nn; i++) {
FILL(vis);
if (!mat[i])
if (find(i)) cnt++;
}
if (nn % 2 == 0 && cnt == nn/2) {
cout<<"Yes\n";
}
else cout<<"No\n";
}
return 0;
}
bool find(int f) {
for (int i=0; i<g[f].size(); i++) {
int t = g[f][i];
if (!vis[t]) {
vis[t] = 1;
if (mat[t] == 0 || find(mat[t])) {
mat[t] = f;
return 1;
}
}
}
return 0;
}