CaiT通过LayerScale层来保证深度ViT训练的稳定性,加上将特征学习和分类信息提取隔离的class-attention层达到了很不错的性能,值得看看
来源:晓飞的算法工程笔记 公众号
论文: Going deeper with Image Transformers

Introduction
自ResNet出现以来,残差架构在计算机视觉中非常突出:

其中函数 g l g_l gl和 R l R_l Rl定义了网络如何更新第l层的输入 x l x_l xl。函数 g l g_l gl通常是恒等式,而残差分支 R l R_l Rl则是网络构建的核心模块,许多研究都着力于残差分支 R l R_l Rl的变体以及如何对 R l R_l Rl进行初始化。实际上,残差结构突出了训练优化和结构设计之间的相互作用,正如ResNet作者所说的:残差结构没有提供更好的特征表达能力,之所以取得更好的性能,是因为残差结构更容易训练。
目前很火的ViT网络可认为是实现了一种特定形式的残差架构:在将输入图像转换为一组 x 0 x_0 x0的向量之后,网络交替进行自注意力层 (SA) 与前馈网络 (FFN) 处理:

其中 η \eta η是LayerNorm算子。
对于卷积神经网络和应用于NLP或语音任务的Transformer,如何对残差架构的残差分支进行归一化、加权或初始化受到了广泛关注。作者也在ViT上对不同初始化、优化和架构设计之间的相互作用进行了分析,并且提出了LayerScale层。LayerScale层包含一个初始权值接近于零的可学习对角矩阵,加在每个残差模块的输出上,可以有效地改进更深层架构的训练。
此外,作者还提出了class-attention层。类似于编码器/解码器架构,显示地将用于token间特征提取的transformer层与将token整合成单一向量进行分类的class-attention层分开,避免了两种目标不同的处理混合的矛盾现象。
通过实验验证,论文的主要贡献如下:
- LayerScale能够显着促进了训练收敛并提高了深度更大的ViT的准确性,仅需在训练时向网络添加了数千个参数(对比总参数量可以忽略不计)。
- 具有class-attention的架构提供了更高效的class embedding的处理。
- 在Imagenet-Real和Imagenet V2 matched frequency上,CaiT无需额外的训练数据就达到了SOTA性能。在ImageNet1k-val上,CaiT与最先进的模型 (86.5%) 相当,但仅需要更少的 FLOPs (329B vs 377B)和更少的参数(356M vs 438M)。 <

最低0.47元/天 解锁文章
4870

被折叠的 条评论
为什么被折叠?



