难度:easy
类别:divide and conquer
1.题目描述
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
2.算法
先用归并排序将整个数组进行排序,然后对相邻并且相同的数字进行计数,看是否满足count >= n/2,如果满足,则该数即为要找的数。归并排序的时间复杂度是O(nlogn),而计数部分的时间复杂度是O(n),所以总的时间复杂度是O(nlogn)
3.代码实现
注:leetcode只要求类的实现,此处包含main函数的实现,便于测试。
#include <iostream>
#include <vector>
using namespace std;
int majorityElement(vector<int>& nums);
void mergeSort(vector<int>& nums, int min, int max);
void combine(vector<int>& nums, int min, int mid, int max);
int main() {
int n;
int value;
vector<int> data;
cout << "the size of the array: ";
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> value;
data.push_back(value);
}
cout << majorityElement(data) << endl;
return 0;
}
int majorityElement(vector<int>& nums) {
int n = nums.size();
if (n == 0) return 0;
if (n == 1) return nums[0];
mergeSort(nums, 0, n - 1);
for (int i = 0; i < n; ++i)
cout << nums[i] <<" ";
cout <<endl;
int count = 0;
for (int i = 0; i < n - 1; ++i) {
while (nums[i + 1] == nums[i]) {
count++;
i++;
}
if (count >= n/2) {
return nums[i-1];
} else {
count = 0;
}
}
}
void mergeSort(vector<int>& nums, int min, int max) {
if (min >= max) return;
int mid = (min + max)/2;
mergeSort(nums, min, mid);
mergeSort(nums, mid+1, max);
combine(nums, min, mid, max);
}
void combine(vector<int>& nums, int min, int mid, int max) {
int i = min, j = mid + 1;
vector<int> temp;
while (i <= mid && j <= max) {
if (nums[i] < nums[j]) {
temp.push_back(nums[i++]);
} else if (nums[i] > nums[j]) {
temp.push_back(nums[j++]);
} else {
temp.push_back(nums[i++]);
temp.push_back(nums[j++]);
}
}
while (i <= mid) {
temp.push_back(nums[i++]);
}
while (j <= max) {
temp.push_back(nums[j++]);
}
for (int i = min; i <= max; ++i) {
nums[i] = temp[i - min];
}
}
4.小结
归并排序能够很直接地解决很多问题,并且其时间复杂度不是很高,相比冒泡排序号很多。