numpy练习


import numpy as np
from scipy.linalg import toeplitz
#scipy.linalg.toeplitz(c, r=None)


n = 200
m = 500
A = np.random.normal(size=(n,m))
c = np.random.rand(1,m)
r = np.random.rand(1,m)
#print(c)
#print(r)
B = toeplitz(c,r)
print('A:\n')
print(A)
print('B:\n')
print(B)

print("A+A:\n ")
print(A+A)

#print(A.T)
AT = A.T
print("A * AT:\n ")
print(np.dot(A,AT))

print("AT  * A:\n ")
print(np.dot(AT,A))

print("AB:\n ")
print(np.dot(A,B))

def Computing():
	l = input("input l:\n")
	I = np.eye(m)
	L = np.random.randint(int(l),int(l)+1,m)
	#print("I:\n")
	#print(I)
	#print(np.random.randint(int(l),int(l)+1,m))
	return np.dot(A,(B-np.dot(L,I)))

print(Computing())

#-*- coding: gbk -*-
import numpy as np
from scipy.linalg import toeplitz
#scipy.linalg.toeplitz(c, r=None)


n = 200
m = 500
b = np.random.rand(1,m)
c = np.random.rand(1,m)
r = np.random.rand(1,m)
#print(b)
B = toeplitz(c,r)
print(B.shape)

#法一:
#x = B.I * b
x = np.linalg.inv(B) * b 
print(x)

#各种创建矩阵的函数的差别?

#法二:
x = np.linalg.solve(B,b) 
print(x)



# 求解线性方程组
# Ax = b => x = A.I b
# 可以从这种字符串创建矩阵
# 空格分隔行,分号分隔列
#A = np.mat('3 1 4; 1 5 9; 2 6 5') 
#b = np.mat([[1],[2],[3]]) 
#x = A.I * b
#print(x)
'''
matrix([[ 0.2667], 
        [ 0.4667], 
        [-0.0667]]) 
'''


# linalg.solve 解方程组
# 原理是 dot(inv(A), b)
# 不可逆时会报错
#x = np.linalg.solve(A,b) 
#print(x)
'''
matrix([[ 0.2667], 
        [ 0.4667], 
        [-0.0667]]) 
'''

import numpy as np
from scipy.linalg import toeplitz
#scipy.linalg.toeplitz(c, r=None)


n = 200
m = 500
A = np.random.normal(size=(n,m))
c = np.random.rand(1,m)
r = np.random.rand(1,m)
#print(c)
#print(r)
B = toeplitz(c,r)

#compute the Frobenius norm of A
AF = np.linalg.norm(A,"fro")
print(AF)
#compute the infinity norm of B
BF = np.linalg.norm(A,np.inf)
print(BF)

#compute the singular values of B
u,s,vh = np.linalg.svd(B)
#the smallest 
print(min(s))
#the largest 
print(max(s))

import numpy as np
import time

n = 50
Z = np.random.normal(size = (n,n))

start = time.clock()
#the largest sigenvalue
v = np.linalg.norm(Z,ord = 2)
print(v)

a,d = np.linalg.eig(Z)
end = time.clock()
print('a\n')
print(max(a))
print('d\n')
print(d)
print(end-start,'seconds process time')

import numpy as np
import scipy as sp
from scipy import linalg
import time

n = 200
p = input('input p:')
C = np.random.binomial(1,float(p),size = (n,n))
#print(C)

#cpmpute the largest singular value
#1.scipy.linalg.norm(a,ord = 2)
sv = linalg.norm(C,ord = 2)
print(sv)
#2.scipy.linalg.svd(a)
u,s,vh = linalg.svd(C)
print(max(s))

import numpy as np

def find_nearest_neighbor(A,z):
	m = np.argmin(A)
	b = np.greater(a,m)
	d = []
	for i in range(0,len(b)):
		if b[i] == True:
			d.append(a[i])
	return d[np.argmin(d)]


m = 5
a = [9,8,2,5,7,1,3,4,1,8]
result = find_nearest_neighbor(a,m)
print(result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值