2016百度之星 hdu 5690 矩阵快速幂

本文介绍了一种利用矩阵快速幂解决特定数学问题的方法,并通过一个具体的编程实例演示了如何计算由相同数字组成的多位数模某数的问题。该方法适用于处理大规模数据的计算问题。



链接:戳这里


All X
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:
F(x,m) mod k ≡ c
Input
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9 

1≤m≤1010

0≤c<k≤10,000
 
Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。


思路:

先用矩阵快速幂求出m个x,然后直接乘y%k==c


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<iomanip>
#include<cmath>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define maxn 0x3f3f3f3f
#define MAX 1000100
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef unsigned long long ull;
#define INF (1ll<<60)-1
using namespace std;
ll x,m,mod,c;
struct Matrix{
    ll ma[2][2];
    Matrix(){
        for(int i=0;i<2;i++)
            for(int j=0;j<2;j++)
                ma[i][j]=0;
    }
};
Matrix Mult(Matrix a,Matrix b){
    Matrix c;
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){
            for(int k=0;k<2;k++){
                c.ma[i][j]=(c.ma[i][j]+a.ma[i][k]*b.ma[k][j]%mod)%mod;
            }
        }
    }
    return c;
}
Matrix MPow(Matrix a,ll b){
    Matrix tmp;
    for(int i=0;i<2;i++) tmp.ma[i][i]=1;
    while(b){
        if(b%2) tmp=Mult(tmp,a);
        a=Mult(a,a);
        b/=2;
    }
    return tmp;
}
int main(){
    int T;
    scanf("%d",&T);
    for(int cas=1;cas<=T;cas++){
        scanf("%I64d%I64d%I64d%I64d",&x,&m,&mod,&c);
        printf("Case #%d:\n",cas);
        Matrix a,b;
        a.ma[0][0]=10;a.ma[0][1]=1;a.ma[1][0]=0;a.ma[1][1]=1;
        b=MPow(a,m-1);
        /*for(int i=0;i<2;i++){
            for(int j=0;j<2;j++){
                cout<<b.ma[i][j]<<" ";
            }
            cout<<endl;
        }*/
        ll ans=(b.ma[0][0]*x+b.ma[0][1]*x)%mod;
        ///cout<<ans<<endl;
        if(ans%mod==c) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
    return 0;
}


### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值