题目:
https://www.luogu.org/problemnew/show/P5293
分析:
设
f
[
t
]
f[t]
f[t]为余数为
t
t
t的答案。
考虑走
i
i
i步的贡献,
f
[
t
]
=
∑
i
=
0
L
[
i
m
o
d
k
=
=
t
]
(
L
i
)
W
(
x
,
y
)
i
f[t]=\sum_{i=0}^{L}[i\ mod\ k==t]\binom{L}{i}W^i_{(x,y)}
f[t]=i=0∑L[i mod k==t](iL)W(x,y)i
其中
W
i
W^i
Wi表示原矩阵的
i
i
i次幂。
根据单位根反演,
[
k
∣
n
]
=
1
k
∗
∑
i
=
0
k
−
1
(
w
k
n
)
i
[k|n]=\frac{1}{k}*\sum_{i=0}^{k-1}(w_k^n)^i
[k∣n]=k1∗∑i=0k−1(wkn)i。
证明还是很显然,当
k
∣
n
k|n
k∣n是,每一个单位复根都是
1
1
1,而如果不成立,不同的单位复根会相互抵消。
那么
f
[
t
]
=
∑
i
=
0
L
1
k
∑
j
=
0
k
−
1
(
w
k
i
−
t
)
j
∗
(
L
i
)
W
(
x
,
y
)
i
f[t]=\sum_{i=0}^{L}\frac{1}{k}\sum_{j=0}^{k-1}(w_k^{i-t})^j*\binom{L}{i}W^i_{(x,y)}
f[t]=i=0∑Lk1j=0∑k−1(wki−t)j∗(iL)W(x,y)i
=
1
k
∗
∑
j
=
0
k
−
1
w
k
−
j
t
∑
i
=
0
L
w
k
j
∗
i
∗
(
L
i
)
W
(
x
,
y
)
i
=\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}\sum_{i=0}^{L}w_k^{j*i}*\binom{L}{i}W^i_{(x,y)}
=k1∗j=0∑k−1wk−jti=0∑Lwkj∗i∗(iL)W(x,y)i
后面就是一个二项式
(
x
+
y
)
n
(x+y)^n
(x+y)n的形式,
f
[
t
]
=
1
k
∗
∑
j
=
0
k
−
1
w
k
−
j
t
(
w
k
j
∗
W
+
I
)
(
x
,
y
)
L
f[t]=\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}(w_k^j*W+I)^L_{(x,y)}
f[t]=k1∗j=0∑k−1wk−jt(wkj∗W+I)(x,y)L
其中
I
I
I是一个对角线为1,其他为
0
0
0的矩阵,设
a
j
=
(
w
k
j
∗
W
+
I
)
(
x
,
y
)
L
a_j=(w_k^j*W+I)^L_{(x,y)}
aj=(wkj∗W+I)(x,y)L。
答案就是
f
[
t
]
=
1
k
∗
∑
j
=
0
k
−
1
w
k
−
j
t
∗
a
j
f[t]=\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}*a_j
f[t]=k1∗j=0∑k−1wk−jt∗aj
容易发现,上面的式子相当于求一次逆的fft。对于
k
=
2
p
k=2^p
k=2p的可以解决。
因为
−
j
t
=
−
(
j
+
t
2
)
+
(
j
2
)
+
(
t
2
)
-jt=-\binom{j+t}{2}+\binom{j}{2}+\binom{t}{2}
−jt=−(2j+t)+(2j)+(2t)。上式可以化成一个减卷积形式,直接任意模数fft解决即可。
代码:
// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#define LL long long
const int maxn=4e5+7;
const double pi=acos(-1);
using namespace std;
int n,k,L,x,y,len,cnt;
int p[maxn];
LL mod,G;
LL f[maxn],g[maxn],r[maxn],wk[maxn];
struct matrix{
LL a[4][4];
}A,B,C;
struct rec{
double x,y;
}a[maxn],b[maxn],w[maxn],dfta[maxn],dftb[maxn],dftc[maxn],dftd[maxn];
rec operator +(rec a,rec b)
{
return (rec){a.x+b.x,a.y+b.y};
}
rec operator -(rec a,rec b)
{
return (rec){a.x-b.x,a.y-b.y};
}
rec operator *(rec a,rec b)
{
return (rec){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}
rec operator !(rec a)
{
return (rec){a.x,-a.y};
}
matrix operator *(matrix a,matrix b)
{
matrix c;
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++) c.a[i][j]=0;
}
for (int k=1;k<=n;k++)
{
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
{
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%mod)%mod;
}
}
}
return c;
}
void divide(int x)
{
for (int i=2;i<=trunc(sqrt(x));i++)
{
if (x%i==0)
{
p[++cnt]=i;
while (x%i==0) x/=i;
}
}
if (x>1) p[++cnt]=x;
}
LL ksm(LL x,LL y)
{
if (y==0) return 1;
if (y==1) return x;
LL c=ksm(x,y/2);
c=(c*c)%mod;
if (y%2==1) c=(c*x)%mod;
return c;
}
void findroot(int x)
{
for (int i=2;i<x;i++)
{
int flag=0;
for (int j=1;j<=cnt;j++)
{
if (ksm(i,(x-1)/p[j])==1)
{
flag=1;
break;
}
}
if (!flag)
{
G=i;
return;
}
}
}
void power(int k)
{
if (k==1)
{
C=B;
return;
}
power(k/2);
C=C*C;
if (k&1) C=C*B;
}
void fft(rec *a,LL f)
{
for (LL i=0;i<len;i++)
{
if (i<r[i]) swap(a[i],a[r[i]]);
}
w[0]=(rec){1,0};
for (LL i=2;i<=len;i*=2)
{
rec wn=(rec){cos(2*pi/i),f*sin(2*pi/i)};
for (LL j=i/2;j>=0;j-=2) w[j]=w[j/2];
for (LL j=1;j<i/2;j+=2) w[j]=w[j-1]*wn;
for (LL j=0;j<len;j+=i)
{
for (LL k=0;k<i/2;k++)
{
rec u=a[j+k],v=a[j+k+i/2]*w[k];
a[j+k]=u+v;
a[j+k+i/2]=u-v;
}
}
}
}
void init(LL len)
{
LL k=trunc(log(len+0.5)/log(2));
for (LL i=0;i<len;i++)
{
r[i]=(r[i>>1]>>1)|((i&1)<<(k-1));
}
}
void FFT(LL *x,LL *y,LL *z,LL n,LL m)
{
len=1;
while (len<(n+m-1)) len*=2;
init(len);
for (LL i=0;i<len;i++)
{
LL A,B;
if (i<n) A=x[i]%mod; else A=0;
if (i<m) B=y[i]%mod; else B=0;
a[i]=(rec){(double)(A>>15),(double)(A&32767)};
b[i]=(rec){(double)(B>>15),(double)(B&32767)};
}
fft(a,1); fft(b,1);
for (LL i=0;i<len;i++)
{
LL j=(len-i)&(len-1);
rec da,db,dc,dd;
da=(a[i]+(!a[j]))*(rec){0.5,0};
db=(a[i]-(!a[j]))*(rec){0,-0.5};
dc=(b[i]+(!b[j]))*(rec){0.5,0};
dd=(b[i]-(!b[j]))*(rec){0,-0.5};
dfta[i]=da*dc;
dftb[i]=da*dd;
dftc[i]=db*dc;
dftd[i]=db*dd;
}
for (LL i=0;i<len;i++)
{
a[i]=dfta[i]+dftb[i]*(rec){0,1};
b[i]=dftc[i]+dftd[i]*(rec){0,1};
}
fft(a,-1); fft(b,-1);
for (LL i=0;i<len;i++)
{
LL da,db,dc,dd;
da=(LL)(a[i].x/len+0.5)%mod;
db=(LL)(a[i].y/len+0.5)%mod;
dc=(LL)(b[i].x/len+0.5)%mod;
dd=(LL)(b[i].y/len+0.5)%mod;
z[i]=((da<<30)%mod+((db+dc)<<15)%mod+dd)%mod;
}
}
int getinv(int p)
{
if (!p) return p;
return k-p;
}
void solve()
{
divide(mod-1);
findroot(mod);
wk[0]=1,wk[1]=ksm(G,(mod-1)/k);
for (int i=2;i<k;i++) wk[i]=wk[i-1]*wk[1]%mod;
for (int i=0;i<k;i++)
{
for (int j=1;j<=n;j++)
{
for (int l=1;l<=n;l++) B.a[j][l]=A.a[j][l]*wk[i]%mod;
B.a[j][j]=(B.a[j][j]+1)%mod;
}
power(L);
f[i]=C.a[x][y]*ksm(wk[getinv((LL)i*(LL)(i-1)/2%k)],mod-2)%mod;
}
for (int i=0;i<2*k;i++) g[i]=wk[getinv((LL)i*(LL)(i-1)/2%k)];
reverse(g,g+2*k);
FFT(f,g,g,k,2*k);
reverse(g,g+2*k);
LL inv=ksm(k,mod-2);
for (int i=0;i<k;i++) printf("%lld\n",g[i]*inv%mod*ksm(wk[getinv((LL)i*(LL)(i-1)/2%k)],mod-2)%mod);
}
int main()
{
scanf("%d%d%d%d%d%lld",&n,&k,&L,&x,&y,&mod);
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++) scanf("%lld",&A.a[i][j]);
}
solve();
}