0/1背包_1

本文介绍了一种特殊的01背包问题,其特点在于交易条件的限制。通过对物品按差值(Qi-Pi)排序,利用01背包算法求解商人与iSea之间的最优交易方案,以获得最大价值。

Description

Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerful kingdom in the world. As a result, the people in this country are still very proud even if their nation hasn’t been so wealthy any more. 
The merchants were the most typical, each of them only sold exactly one item, the price was Pi, but they would refuse to make a trade with you if your money were less than Qi, and iSea evaluated every item a value Vi. 
If he had M units of money, what’s the maximum value iSea could get? 

Input

There are several test cases in the input. 

Each test case begin with two integers N, M (1 ≤ N ≤ 500, 1 ≤ M ≤ 5000), indicating the items’ number and the initial money. 
Then N lines follow, each line contains three numbers Pi, Qi and Vi (1 ≤ Pi ≤ Qi ≤ 100, 1 ≤ Vi ≤ 1000), their meaning is in the description. 

The input terminates by end of file marker. 

Output

For each test case, output one integer, indicating maximum value iSea could get. 

Sample Input

2 10
10 15 10
5 10 5
3 10
5 10 5
3 5 6
2 7 3

Sample Output

5
11

这道题和一般的01背包不一样,因为一般的01背包与装物品的顺序无关,这道题所以要按照差值(qi-pi)从小到大排序,然后用01背包的方法进行操作就行了!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct Node
{
    int p,q,v;
}a[550];

int bag[5010];

bool cmp(Node a,Node b)
{
    return (a.q-a.p)<(b.q-b.p);
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(bag,0,sizeof(bag));
        for(int i=0;i<n;i++)
            scanf("%d%d%d",&a[i].p,&a[i].q,&a[i].v);
        sort(a,a+n,cmp);
        for(int i=0;i<n;i++)
        {
            for(int j=m;j>=a[i].q;j--)//等号是临界情况
            {
                bag[j]=max(bag[j],bag[j-a[i].p]+a[i].v);
            }
        }
            printf("%d\n",bag[m]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值