区间dp_3

本文介绍了一种通过动态规划解决的算法问题——如何在一种特殊的乘法游戏中以最优策略选取数字卡片,使得总得分最小。游戏规则是在一排含有正整数的卡片中,按特定顺序移除卡片并计算得分,目标是最小化最终得分。

Description

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

The goal is to take cards in such order as to minimize the total number of scored points. 

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

Input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

Output

Output must contain a single integer - the minimal score.

Sample Input

6
10 1 50 50 20 5

Sample Outpu

3650
每次去牌都只跟左右断电有关,问题的解就是取走最后一张牌的得分+两个子区间上的最小得分。不妨假设当前区间为[i, j],在(i,j)之间枚举最后一张被取走的牌,通过最优子问题求出当前区间的最优解:

dp[i][j] = min{ dp[i][k]+dp[k][j] + a[i]*a[j]*a[k]   (i+1<=k<=j-1) }

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>

using namespace std;
int a[110];
int dp[110][110];

int main()
{
    int n;
    int len,i,j,k;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    memset(dp,0,sizeof(dp));
    for(len=3;len<=n;len++)//len一定要取到等号
    {
        for(i=0;i<n;i++)
        {
            j=len+i-1;// 要准确,否则会出错
            dp[i][j]=10000000;
            for(k=i+1;k<j;k++)
                dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);//关键部分
        }
    }
    printf("%d\n",dp[0][n-1]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值