[leetcode]Factorial Trailing Zeroes

博客园网址:http://www.cnblogs.com/ganganloveu/p/4193373.html

Factorial Trailing Zeroes

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

 

对n!做质因数分解n!=2x*3y*5z*...

显然0的个数等于min(x,z),并且min(x,z)==z

证明:

对于阶乘而言,也就是1*2*3*...*n
[n/k]代表1~n中能被k整除的个数
那么很显然
[n/2] > [n/5] (左边是逢2增1,右边是逢5增1)
[n/2^2] > [n/5^2](左边是逢4增1,右边是逢25增1)
……
[n/2^p] > [n/5^p](左边是逢2^p增1,右边是逢5^p增1)
随着幂次p的上升,出现2^p的概率会远大于出现5^p的概率。
因此左边的加和一定大于右边的加和,也就是n!质因数分解中,2的次幂一定大于5的次幂

 

解法一:

从1到n中提取所有的5

复制代码
class Solution {
public:
    int trailingZeroes(int n) {
        int ret = 0;
        for(int i = 1; i <= n; i ++)
        {
            int tmp = i;
            while(tmp%5 == 0)
            {
                ret ++;
                tmp /= 5;
            }
        }
        return ret;
    }
};
复制代码

 

解法二:

由上述分析可以看出,起作用的只有被5整除的那些数。能不能只对这些数进行计数呢?

存在这样的规律:[n/k]代表1~n中能被k整除的个数。

因此解法一可以转化为解法二

复制代码
class Solution {
public:
    int trailingZeroes(int n) {
        int ret = 0;
        while(n)
        {
            ret += n/5;
            n /= 5;
        }
        return ret;
    }
};
复制代码
推酷网址:http://www.tuicool.com/articles/RZZnQf

题目描述:

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in polynomial time complexity.

题目大意:

给定一个整数n,返回n!(n的阶乘)数字中的后缀0的个数。

注意:你的解法应该满足多项式时间复杂度。

解题思路:

参考博文:http://www.geeksforgeeks.org/count-trailing-zeroes-factorial-number/

朴素解法:

首先求出n!,然后计算末尾0的个数。(重复÷10,直到余数非0)

该解法在输入的数字稍大时就会导致阶乘得数溢出,不足取。

O(logn)解法:

一个更聪明的解法是:考虑n!的质数因子。后缀0总是由质因子2和质因子5相乘得来的。如果我们可以计数2和5的个数,问题就解决了。考虑下面的例子:

n = 5: 5!的质因子中 (2 * 2 * 2 * 3 * 5)包含一个5和三个2。因而后缀0的个数是1。

n = 11: 11!的质因子中(2^8 * 3^4 * 5^2 * 7)包含两个5和三个2。于是后缀0的个数就是2。

我们很容易观察到质因子中2的个数总是大于等于5的个数。因此只要计数5的个数就可以了。那么怎样计算n!的质因子中所有5的个数呢?一个简单的方法是计算floor(n/5)。例如,7!有一个5,10!有两个5。除此之外,还有一件事情要考虑。诸如25,125之类的数字有不止一个5。例如,如果我们考虑28!,我们得到一个额外的5,并且0的总数变成了6。处理这个问题也很简单,首先对n÷5,移除所有的单个5,然后÷25,移除额外的5,以此类推。下面是归纳出的计算后缀0的公式。

n!后缀0的个数 = n!质因子中5的个数
              = floor(n/5) + floor(n/25) + floor(n/125) + ....

Python代码:

class Solution:
  # @return an integer
  def trailingZeroes(self, n):
    x = 5
    ans = 0
    while n >= x:
      ans += n / x
      x *= 5
    return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值