flink 1.8
Scala API Extensions
为了保证Scala和Java APIs在语法间的一致性,在批处理和流处理的标准APIs 中省略了Scala才具有的高级表达能力的特性。
如果您想更好的体验Scala的用法,您可以选择选择通过隐式转换增强Scala API的扩展。
要使用所有可用的扩展,您只需为DataSet API添加一个简单的import
import org.apache.flink.api.scala.extensions._
或DataStream API
import org.apache.flink.streaming.api.scala.extensions._
或者,您可以导入单独的扩展名a-la-carte来只使用您喜欢的扩展名。
Accept partial functions
通常,DataSet和DataStream APIs 都不接受匿名模式匹配函数来解构元组tuples、case类或集合collections,如下所示:
val data: DataSet[(Int, String, Double)] = // [...]
data.map {
case (id, name, temperature) => // [...]
// The previous line causes the following compilation error:
// "The argument types of an anonymous function must be fully known. (SLS 8.5)"
}
这个扩展在DataSet和DataStream Scala API中引入了新的方法,这些方法在扩展的API中具有一对一的对应关系。这些委派方法确实支持匿名模式匹配函数。
DataSet API
Method | Original | Example |
mapWith | map (DataSet) | data.mapWith { case (_, value) => value.toString } |
mapPartitionWith | mapPartition (DataSet) | data.mapPartitionWith { case head #:: _ => head } |
flatMapWith | flatMap (DataSet) | data.flatMapWith { case (_, name, visitTimes) => visitTimes.map(name -> _) } |
filterWith | filter (DataSet) | data.filterWith { case Train(_, isOnTime) => isOnTime } |
reduceWith | reduce (DataSet, GroupedDataSet) | data.reduceWith { case ((_, amount1), (_, amount2)) => amount1 + amount2 } |
reduceGroupWith | reduceGroup (GroupedDataSet) | data.reduceGroupWith { case id #:: value #:: _ => id -> value } |
groupingBy | groupBy (DataSet) | data.groupingBy { case (id, _, _) => id } |
sortGroupWith | sortGroup (GroupedDataSet) | grouped.sortGroupWith(Order.ASCENDING) { case House(_, value) => value } |
combineGroupWith | combineGroup (GroupedDataSet) | grouped.combineGroupWith { case header #:: amounts => amounts.sum } |
projecting | apply (JoinDataSet, CrossDataSet) | data1.join(data2). whereClause(case (pk, _) => pk). isEqualTo(case (_, fk) => fk). projecting { case ((pk, tx), (products, fk)) => tx -> products }
data1.cross(data2).projecting { case ((a, _), (_, b) => a -> b } |
projecting | apply (CoGroupDataSet) | data1.coGroup(data2). whereClause(case (pk, _) => pk). isEqualTo(case (_, fk) => fk). projecting { case (head1 #:: _, head2 #:: _) => head1 -> head2 } } |
DataStream API
Method | Original | Example |
mapWith | map (DataStream) | data.mapWith { case (_, value) => value.toString } |
flatMapWith | flatMap (DataStream) | data.flatMapWith { case (_, name, visits) => visits.map(name -> _) } |
filterWith | filter (DataStream) | data.filterWith { case Train(_, isOnTime) => isOnTime } |
keyingBy | keyBy (DataStream) | data.keyingBy { case (id, _, _) => id } |
mapWith | map (ConnectedDataStream) | data.mapWith( map1 = case (_, value) => value.toString, map2 = case (_, _, value, _) => value + 1 ) |
flatMapWith | flatMap (ConnectedDataStream) | data.flatMapWith( flatMap1 = case (_, json) => parse(json), flatMap2 = case (_, _, json, _) => parse(json) ) |
keyingBy | keyBy (ConnectedDataStream) | data.keyingBy( key1 = case (_, timestamp) => timestamp, key2 = case (id, _, _) => id ) |
reduceWith | reduce (KeyedStream, WindowedStream) | data.reduceWith { case ((_, sum1), (_, sum2) => sum1 + sum2 } |
foldWith | fold (KeyedStream, WindowedStream) | data.foldWith(User(bought = 0)) { case (User(b), (_, items)) => User(b + items.size) } |
applyWith | apply (WindowedStream) | data.applyWith(0)( foldFunction = case (sum, amount) => sum + amount windowFunction = case (k, w, sum) => // [...] ) |
projecting | apply (JoinedStream) | data1.join(data2). whereClause(case (pk, _) => pk). isEqualTo(case (_, fk) => fk). projecting { case ((pk, tx), (products, fk)) => tx -> products } |
有关每个方法的语义的更多信息,请参阅 DataSet和DataStream API文档。要完全使用此扩展,可以添加以下import:
import org.apache.flink.api.scala.extensions.acceptPartialFunctions
对与流处理的数据集DataSet,需要引入一下包:
import org.apache.flink.streaming.api.scala.extensions.acceptPartialFunctions
下面的代码片段展示了如何结合使用这些扩展方法(对应DataSet API)的最小示例:
object Main {
import org.apache.flink.api.scala.extensions._
case class Point(x: Double, y: Double)
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
val ds = env.fromElements(Point(1, 2), Point(3, 4), Point(5, 6))
ds.filterWith {
case Point(x, _) => x > 1
}.reduceWith {
case (Point(x1, y1), (Point(x2, y2))) => Point(x1 + y1, x2 + y2)
}.mapWith {
case Point(x, y) => (x, y)
}.flatMapWith {
case (x, y) => Seq("x" -> x, "y" -> y)
}.groupingBy {
case (id, value) => id
}
}
}
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/scala_api_extensions.html