中文电子病例命名实体识别项目

该项目使用双向LSTM和CRF模型进行中文电子病例的命名实体识别,针对CCKS2018评测任务,识别解剖部位、症状、手术和药物等实体。实验结果显示训练集准确率为0.9649,测试集准确率为0.8451。提供训练数据、转换脚本和预训练模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MedicalNamedEntityRecognition

Medical Named Entity Recognition implement using bi-directional lstm and crf model with char embedding.CCKS2018中文电子病例命名实体识别项目,主要实现使用了基于字向量的四层双向LSTM与CRF模型的网络.该项目提供了原始训练数据样本(一般项目,出院情况,病史情况,病史特点,诊疗经过)与转换版本,训练脚本,预训练模型,可用于序列标注研究.把玩和PK使用.
项目地址:https://github.com/liuhuanyong/MedicalNamedEntityRecognition

项目介绍

电子病历结构化是让计算机理解病历、应用病历的基础。基于对病历的结构化,可以计算出症状、疾病、药品、检查检验等多个知识点之间的关系及其概率,构建医疗领域的知识图谱,进一步优化医生的工作.
CCKS2018的电子病历命名实体识别的评测任务,是对于给定的一组电子病历纯文本文档,识别并抽取出其中与医学临床相关的实体,并将它们归类到预先定义好的类别中。组委会针对这个评测任务,提供了600份标注好的电子病历文本,共需识别含解剖部位、独立症状、症状描述、手术和药物五类实体。
领域命名实体识别问题自然语言处理中经典的序列标注问题, 本项目是运用深度学习方法进行命名实体识别的一个尝试.

实验数据

一, 目标序列标记集合
O非实体部分,TREATMENT治疗方式, BODY身体部位, SIGN疾病症状, CHECK医学检查, DISEASE疾病实体,
二, 序列标记方法
采用BIO三元标记

self.class_dict ={
                 '
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值