POJ - 1679 The Unique MST (最小生成树MST)

本文介绍了一种算法,用于判断给定的无向图是否只有一棵最小生成树(MST)。通过输入节点和边的权重,算法能确定MST的唯一性,并输出其总权重或'NotUnique!'字符串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a connected undirected graph, tell if its minimum spanning tree is unique. 

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic. 

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

题意:判断是不是只有一棵最小生成树,如果是输出权值和,如果不是输出Not Unique!,输入的边没有重复

题解:判断是不是有圈即可,详细见代码:

#include <iostream>
#include <algorithm>
using namespace std;
const int MAX = 1e6;
struct hh{
	int u,v,w;
}a[MAX];
int f[MAX];
int n,m;
int find(int x){
	return f[x]==x? x:f[x]=find(f[x]);
}
//void lianjie(int u,int v){
//	int root1=find(u);
//	int root2=find(v);
//	if(root1!=root2) f[root1]=root2;
//}
bool cmp(hh a,hh b){
	return a.w<b.w;
}
int main(){
	int t;
	cin >> t;
	while(t--){
		cin >> n >> m;
		for (int i = 1; i <= n;i++) f[i]=i;
		for (int i = 0; i < m;i++){
			cin >> a[i].u >> a[i].v >> a[i].w;
		}
		sort(a,a+n,cmp);
		int cnt;
		int love=0;
		int sum=0;
		int ans=0;
		for (int i = 0; i < m;){
			cnt=i;
			while(a[i].w==a[cnt].w&&cnt<m){//判断是不是有圈
				int root1=find(a[cnt].u);
				int root2=find(a[cnt].v);
				if(root1!=root2) love++;//有圈的话这个love>ans这是下面最小生成树的边的数量
				cnt++;
			}
			cnt=i;
			while(a[i].w==a[cnt].w&&cnt<m){//建最小生成树
				int root1=find(a[cnt].u);
				int root2=find(a[cnt].v);
				if(root1!=root2){
					ans++;
					sum+=a[i].w;
					f[root1]=root2;
				}
				cnt++;
			}
			i=cnt;
			if(ans==n-1) break;
		}
		if(love>ans) cout << "Not Unique!" << endl;//如果有圈,就不唯一
		else cout << sum << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心脏dance

如果解决了您的疑惑,谢谢打赏呦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值