问题
如果有2个矩阵Y∈Rn×qY \in R^{n \times q}Y∈Rn×q 和 Z∈Rn×cZ \in R^{n \times c}Z∈Rn×c ,如何度量两个矩阵的相似性?
回答
采用The Hilbert-Schmidt Independence Criterion (HSIC)进行度量。
HSIC(Z,Y)=(n−1)−2Tr(HKHQ)
HSIC(Z, Y) = (n − 1)^{-2}Tr(HKHQ)
HSIC(Z,Y)=(n−1)−2Tr(HKHQ)
其中,K=ZZTK = ZZ^TK=ZZT and Q=YYTQ = YY^TQ=YYT are the inner
product of instances in Z and Y respectively and H=I−1neeTH = I − \frac{1}{n} ee^TH=I−n1eeT and
III denote the identity matrix(单位矩阵),and eee be a vector of all ones.
理解
- 计算结果值越大,表示越接近。
参考:
[1] Huang R, Wu Z. Multi-label feature selection via manifold regularization and dependence maximization[J]. Pattern Recognition, 2021, 120: 108149.
[2] Gretton A , Bousquet O , Smola A , et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms[J]. Springer, Berlin, Heidelberg, 2005.