数据结构之赫夫曼树的算法介绍和实现

本文介绍了赫夫曼树的基本概念,包括最优二叉树、带权路径长度和赫夫曼编码。通过逐步构建赫夫曼树的过程,展示了如何用这些原理来设计电文的最短二进制前缀编码。此外,文章还讨论了赫夫曼树的存储结构及其在数据压缩中的应用。

一、基础知识:

(1)最优二叉树(赫夫曼树)的介绍:

a、路径长度:从树中一个结点到另一个结点之间的分支构成这两个结点之间的路径,路径上分支数目称做路径长度。

b、树的路径长度:从树根到每一个结点之间的路径长度之和。上一篇介绍的完全二叉树就是这种路径长度最短的二叉树。

c、带权路径长度:结点的带权路径长度为从该结点到树根之间的路径产度与结点上权的乘积。树的带权路径长度为树中所有叶子结点的带权路径长度之和,通常记作WPL。

d、最优二叉树(赫夫曼树):假设有n个权值w1,w2,···wn,试构造一棵有n个叶子结点的二叉树,每个叶子结点带权为wi,则其中带权路径长度WPL最小的二叉树称做最优二叉树或赫夫曼树。


(2)构造赫夫曼树:

1、根据给定的n个权值{w1,w2,···wn}构成 n棵二叉树的集合F={T1,T2,···Tn},其中每个二叉树Ti中只有一个带权为wi的根结点,其左右子树均为空。

2、选择两棵根结点的权值最小的输作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为其左、右子树上的根结点的权值之和。

3、在F中删除这两棵树,同时将新得到的二叉树加入F中。

4、重复2和3,直到F只含一棵树为止。这棵树便是赫夫曼树。


(3)赫夫曼编码

       

//算法5.11 根据赫夫曼树赫夫曼编码 #include using namespace std; typedef struct { int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char **HuffmanCode; void Select(HuffmanTree HT,int len,int &s1,int &s2) { int i,min1=0x3f3f3f3f,min2=0x3f3f3f3f;//先赋予最大值 for(i=1;i<=len;i++) { if(HT[i].weight<min1&&HT[i].parent==0) { min1=HT[i].weight; s1=i; } } int temp=HT[s1].weight;//将原值存放起来,然后先赋予最大值,防止s1被重复选择 HT[s1].weight=0x3f3f3f3f; for(i=1;i<=len;i++) { if(HT[i].weight<min2&&HT[i].parent==0) { min2=HT[i].weight; s2=i; } } HT[s1].weight=temp;//恢复原来的值 } //用算法5.10构造赫夫曼树 void CreatHuffmanTree(HuffmanTree &HT,int n) { //构造赫夫曼树HT int m,s1,s2,i; if(n<=1) return; m=2*n-1; HT=new HTNode[m+1]; //0号单元未用,所以需要动态分配m+1个单元,HT[m]表示根结点 for(i=1;i<=m;++i) //将1~m号单元中的双亲、左孩子,右孩子的下标都初始化为0 { HT[i].parent=0; HT[i].lchild=0; HT[i].rchild=0; } cout<<"请输入叶子结点的权值:\n"; for(i=1;i>HT[i].weight; /*――――――――――初始化工作结束,下面开始创建赫夫曼树――――――――――*/ for(i=n+1;i<=m;++i) { //通过n-1次的选择、删除、合并来创建赫夫曼树 Select(HT,i-1,s1,s2); //在HT[k](1≤k≤i-1)中选择两个其双亲域为0且权值最小的结点, // 并返回它们在HT中的序号s1s2 HT[s1].parent=i; HT[s2].parent=i; //得到新结点i,从森林中删除s1,s2,将s1s2的双亲域由0改为i HT[i].lchild=s1; HT[i].rchild=s2 ; //s1,s2分别作为i的左右孩子 HT[i].weight=HT[s1].weight+HT[s2].weight; //i 的权值为左右孩子权值之 } //for } // CreatHuffmanTree void CreatHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int n) { //从叶子到根逆向求每个字符的赫夫曼编码,存储在编码表HC中 int i,start,c,f; HC=new char*[n+1]; //分配n个字符编码的头指针矢量 char *cd=new char[n]; //分配临时存放编码的动态数组空间 cd[n-1]='\0'; //编码结束符 for(i=1;i<=n;++i) { //逐个字符求赫夫曼编码 start=n-1; //start开始时指向最后,即编码结束符位置 c=i; f=HT[i].parent; //f指向结点c的双亲结点 while(f!=0) { //从叶子结点开始向上回溯,直到根结点 --start; //回
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值