最大连续子序列和,非常经典的dp问题。状态转移方程如下所示:
f[i] = max(f[i-1]+a[i],f[i-1]);
max({f[i]})
分析可以参考一下链接
http://www.tuicool.com/articles/UzmU7jb
http://blog.youkuaiyun.com/lanxu_yy/article/details/17527745
http://www.acmerblog.com/leetcode-solution-maximum-subarray-6334.html
代码如下所示
#include<stdio.h>
int max(int a,int b){
if(a >= b){
return a ;
}else{
return b ;
}
}
int maxSubArray(int* nums, int numsSize) {
int sum[numsSize] ;
sum[0] = nums[0] ;
for(int i=1;i<numsSize;i++){
sum[i] = max(sum[i-1]+nums[i],nums[i]) ;
}
int max = -10000 ;
for(int i=0;i<numsSize;i++){
if(sum[i]>max){
max = sum[i] ;
}
}
return max ;
}
int main(){
int nums[] = {-2,1,-3,4,-1,2,1,-5,4} ;
int result = maxSubArray(nums,9) ;
printf("%d\n",result) ;
return 0 ;
}