回顾过去,展望未来

今天是春节后上班的第二天,刚好趁着有点时间,我想稍微梳理下过去的一年,也对未来做些期许。

2017年对我来说,变化是巨大的。我从华为离职入职诺基亚。工作的改变,也势必影响生活的改变。现状回想当初的决定,还是不舍,但是不后悔。不舍的原因倒不是华为的高薪酬,而是在华为工作的工作氛围和习惯。当时走,也有很大原因是由于华为的工作氛围和工作习惯,但是到头来我还是对这种文化的不舍。从一个嵌入式工程师转变成云开发工程师,工作内容的转变,我也进入了一个新的领域。这个领域对我来说是陌生。我以前的经验在这里几乎无用。很多东西需要从头开始学习。这些变化也影响了我的生活。相对于华为的工作强度,诺基亚几乎可以不用加班。相对于华为的强大压力,诺基亚几乎没有压力。

2017已经过去。华为生涯也已经结束。我进入一个新的公司,一个新的领域。我对自己也有些期望。

在工作上,尽快融入到诺基亚的文化中。包括工作内容的转变。在云计算的领域做些深入的学习和研究。同时提高自己的英语能力,包括听力,口语,阅读能力。

在生活上,2018年定个目标吧,将自己的体重控制在170-180之间。

内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了同场景下的跟踪控制问题。该方法仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值