MongoDB安装过程记录。

本文详细介绍了如何在Windows平台上安装并配置MongoDB,包括解决默认引擎wiredTiger不可用的问题,设置使用mmapv1引擎,并最终将MongoDB配置为Windows服务,方便后续的管理和使用。

首先,从官网上下载MongoDB,我下载的版本是3.2.0,平台是win7-32bit。


安装后,百度了一篇经验,按照步骤安装,安装成功后,将安装的bin目录添加到环境变量path中。创建data目录和log目录


执行指令:mongod --dbpath D:\MongoData\db\ 出现以下问题:



说是默认引擎wiredTiger不可用。 

修改了一下使用的引擎,顺便做了一个配置文件。

执行语句:mongod -storageEngine=mmapv1  --config D:\MongoData\mongo.config --logappend --journal

成功!

紧接着执行语句:mongo 

也成功,访问localhost:27017 出现mongodb的页面。说明成功。


接下来将mongo配置成windows服务

将之前的mongodb停止后,执行语句:mongod.exe -dbpath=d:\MongoData\db -install -logpath=D:\MongoData\log\mongo.log

成功后查看系统服务,发现多出来一个MongoDB的服务。以后就可以通过启动这个服务来启动MongoDB了

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值