- 使用Redis有哪些好处?
- 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O
- 支持丰富数据类型,支持string,list,set,sorted set,hash
- 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
- 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
- redis相比memcached有哪些优势?
- memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
- redis的速度比memcached快很多
- redis可以持久化其数据
- redis常见性能问题和解决方案:
- 项目Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
- 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
- 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
- 尽量避免在压力很大的主库上增加从库
- 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
- MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据 - Memcache与Redis的区别都有哪些?
1)存储方式
Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
Redis有部份存在硬盘上,这样能保证数据的持久性。
2)数据支持类型
Memcache对数据类型支持相对简单。
Redis有复杂的数据类型。
3)使用底层模型不同
它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。
Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
4)value大小
redis最大可以达到1GB,而memcache只有1MB - Redis 常见的性能问题都有哪些?如何解决?
1)Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2)Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3)Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4)Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内 - 高可用
高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响。 停止服务的原因可能由于网卡、路由器、机房、CPU负载过高、内存溢出、自然灾害等不可预期的原因导致,在很多时候也称单点问题。
1)解决单点问题主要有2种方式:
主备方式
这种通常是一台主机、一台或多台备机,在正常情况下主机对外提供服务,并把数据同步到备机,当主机宕机后,备机立刻开始服务。
Redis HA中使用比较多的是keepalived,它使主机备机对外提供同一个虚拟IP,客户端通过虚拟IP进行数据操作,正常期间主机一直对外提供服务,宕机后VIP自动漂移到备机上。优点是对客户端毫无影响,仍然通过VIP操作。
缺点也很明显,在绝大多数时间内备机是一直没使用,被浪费着的。
主从方式
这种采取一主多从的办法,主从之间进行数据同步。当Master宕机后,通过选举算法(Paxos、Raft)从slave中选举出新Master继续对外提供服务,主机恢复后以slave的身份重新加入。主从另一个目的是进行读写分离,这是当单机读写压力过高的一种通用型解决方案。其主机的角色只提供写操作或少量的读,把多余读请求通过负载均衡算法分流到单个或多个slave服务器上。
缺点是主机宕机后,Slave虽然被选举成新Master了,但对外提供的IP服务地址却发生变化了,意味着会影响到客户端。 解决这种情况需要一些额外的工作,在当主机地址发生变化后及时通知到客户端,客户端收到新地址后,使用新地址继续发送新请求。
2)数据同步
同步方式:当主机收到客户端写操作后,以同步方式把数据同步到从机上,当从机也成功写入后,主机才返回给客户端成功,也称数据强一致性。 很显然这种方式性能会降低不少,当从机很多时,可以不用每台都同步,主机同步某一台从机后,从机再把数据分发同步到其他从机上,这样提高主机性能分担同步压力。 在redis中是支持这杨配置的,一台master,一台slave,同时这台salve又作为其他slave的master。
异步方式:主机接收到写操作后,直接返回成功,然后在后台用异步方式把数据同步到从机上。 这种同步性能比较好,但无法保证数据的完整性,比如在异步同步过程中主机突然宕机了,也称这种方式为数据弱一致性。
Redis主从同步采用的是异步方式,因此会有少量丢数据的危险。还有种弱一致性的特例叫最终一致性,这块详细内容可参见CAP原理及一致性模型。
3)方案选择
keepalived方案配置简单、人力成本小,在数据量少、压力小的情况下推荐使用。 如果数据量比较大,不希望过多浪费机器,还希望在宕机后,做一些自定义的措施,比如报警、记日志、数据迁移等操作,推荐使用主从方式,因为和主从搭配的一般还有个管理监控中心。宕机通知这块,可以集成到客户端组件上,也可单独抽离出来。 - 分布式
分布式(distributed), 是当业务量、数据量增加时,可以通过任意增加减少服务器数量来解决问题。
集群时代
至少部署两台Redis服务器构成一个小的集群,主要有2个目的:
高可用性:在主机挂掉后,自动故障转移,使前端服务对用户无影响。
读写分离:将主机读压力分流到从机上。
可在客户端组件上实现负载均衡,根据不同服务器的运行情况,分担不同比例的读请求压力。 - 分布式集群时代
当缓存数据量不断增加时,单机内存不够使用,需要把数据切分不同部分,分布到多台服务器上。
可在客户端对数据进行分片,数据分片算法详见C#一致性Hash详解、C#之虚拟桶分片。
大规模分布式集群时代
当数据量持续增加时,应用可根据不同场景下的业务申请对应的分布式集群。 这块最关键的是缓存治理这块,其中最重要的部分是加入了代理服务。 应用通过代理访问真实的Redis服务器进行读写,这样做的好处是:
避免越来越多的客户端直接访问Redis服务器难以管理,而造成风险。
在代理这一层可以做对应的安全措施,比如限流、授权、分片。
避免客户端越来越多的逻辑代码,不但臃肿升级还比较麻烦。
代理这层无状态的,可任意扩展节点,对于客户端来说,访问代理跟访问单机Redis一样。
码巢带你对标阿里 P6
获取更多资源可以扫码进群或关注公众号


1万+

被折叠的 条评论
为什么被折叠?



