再见 CSV,速度提升 150 倍!

本文介绍了Feather这种快速、轻量级的二进制数据格式,作为CSV的替代方案。Feather在Python中的使用简单,无论是保存还是加载数据,速度远超CSV,尤其适合大数据量操作。通过实例展示了Feather的使用方法,并对比了与CSV在速度和空间占用上的显著差异,强调了Feather在数据存储上的优势。
部署运行你感兴趣的模型镜像

来源:Python数据科学

大家好,我是阳哥。

今天跟大家分享关于数据存储格式的内容。

为什么要和CSV再见?

好了说了那么久,来介绍下为什么要和CSV再见。其实也谈不上彻底再见吧,日常还是要用的,这里再介绍一个更加高效的数据格式。

Python处理数据时保存和加载文件属于日常操作了,尤其面对大数据量时我们一般都会保存成CSV格式,而不是Excel。一是因为Excel有最大行数1048576的限制,二是文件占用空间更大,保存和加载速度很慢。

虽然用CSV没有行数限制,相对轻便,但是面对大数据量时还是略显拉夸,百万数据量储存加载时也要等好久。。不过很多同学都借此机会抻抻懒腰、摸摸鱼,充分利用时间也不错76003cb9ab59a7bbcdd9b692d36d04fb.png

其实,CSV 并不是唯一的数据存储格式。今天和大家介绍一个速度超快、更加轻量级的二进制格式保存格式:feather

Feather是什么?

Feather 是一种用于存储数据帧的数据格式。它最初是为了 PythonR 之间快速交互而设计的,初衷很简单,就是尽可能高效地完成数据在内存中转换的效率。

现在 Feather 也不仅限于 PythonR 了,基本每种主流的编程语言中都可以用 Feather 文件。不过,要说明下,它的数据格式并不是为长期存储而设计的,一般的短期存储。

如何在Python中操作Feather?

Python 中,可以通过 pandasFeather 两种方式操作。首先需要安装feather-format

# pip 
pip install feather -format 

# Anaconda 
conda install -c conda-forgefeather-format

只需要上面一行安装即可,很简单。

我们通过一个较大的数据集举例,需要 FeatherNumpypandas 来一起配合。数据集有 5 列和 1000 万行随机数。

import feather
import numpy as np
import pandas as pd

np.random.seed = 42
df_size = 10000000

df = pd.DataFrame({
    'a': np.random.rand(df_size),
    'b': np.random.rand(df_size),
    'c': np.random.rand(df_size),
    'd': np.random.rand(df_size),
    'e': np.random.rand(df_size)
})
df.head()
8e70ccbfb1c51c6dacd772bdf1d01d87.png

它的用法和之前csv的操作难度一个水平线,非常简单。

保存

两种方式,一是 DataFrame 直接to_featherFeather 格式:

df.to_feather('1M.feather')

二是用 Feather 库执行相同操作的方法:

feather.write_dataframe(df, '1M.feather')

加载

加载也是一样的,同样还是两种方式。一是通过pandas加载:

df = pd.read_feather('1M.feather')

二是用 Feather 加载:

df =feather.read_dataframe('1M.feather')

操作习惯一样,难度完全没有。

和CSV的区别

对比产生美。下面来看下feathercsv的差距有多大。下图显示了上面本地保存 DataFrame 所需的时间:

7f95fbece7ccf53876d2a3c356792e6d.png

差距巨大,有木有!原生 Feather(图中的Native Feather)比 CSV 快了将近 150 倍左右。如果使用 pandas 处理 Feather 文件并没有太大关系,但与 CSV 相比,速度的提高是非常显著的。

然后再看下读取不同格式的相同数据集需要多长时间。

1f50ed22a8661913fa6da4990dd125c0.png

同样,差异也很明显。CSV 的读取速度要慢得多。并且CSV占用的磁盘空间也更大。

d9513655d8cc7b5327ef1a1635ccefa4.png

CSV 文件占用的空间是 Feather 文件占用的空间的两倍多。假如我们每天存储千兆字节的数据,那么选择正确的文件格式至关重要。Feather 在这方面完全碾压了 CSV

当然,如果追求更多的压缩空间,也可以试试Parquet,也是一个可以替代CSV 的格式。

结语

说了这么多,可能很多同学还是甩出一句话:谢谢,我选CSV42bf28ebf324ba6cca60f7ca5cf8be13.png 这个东西怎么说呢b91a011dd00075b91e5197c28b69dec3.png,当你需要它时,它就有用,如果日常没有速度和空间的强烈需求,还是老老实实CSV吧。CSV已经用惯了,改变使用习惯还是挺难的。

---------End---------

顺便给大家推荐下我的微信视频号「Python数据之道」,欢迎扫码关注。

2fae196b5e00ab78fc78b060b6222265.gif

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值