【leetcode】36. Valid Sudoku

本文详细解析了如何通过两次遍历验证9x9数独板的有效性,包括按行、按列和按3x3子网格检查数字1-9是否重复出现。提供了两种方法:暴力法和空间换时间法,并附带了C++代码实现。

36. Valid Sudoku

Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:

  1. Each row must contain the digits 1-9 without repetition.
  2. Each column must contain the digits 1-9 without repetition.
  3. Each of the 9 3x3 sub-boxes of the grid must contain the digits 1-9 without repetition.


A partially filled sudoku which is valid.

The Sudoku board could be partially filled, where empty cells are filled with the character '.'.

Example 1:

Input:
[
  ["5","3",".",".","7",".",".",".","."],
  ["6",".",".","1","9","5",".",".","."],
  [".","9","8",".",".",".",".","6","."],
  ["8",".",".",".","6",".",".",".","3"],
  ["4",".",".","8",".","3",".",".","1"],
  ["7",".",".",".","2",".",".",".","6"],
  [".","6",".",".",".",".","2","8","."],
  [".",".",".","4","1","9",".",".","5"],
  [".",".",".",".","8",".",".","7","9"]
]
Output: true

Example 2:

Input:
[
  ["8","3",".",".","7",".",".",".","."],
  ["6",".",".","1","9","5",".",".","."],
  [".","9","8",".",".",".",".","6","."],
  ["8",".",".",".","6",".",".",".","3"],
  ["4",".",".","8",".","3",".",".","1"],
  ["7",".",".",".","2",".",".",".","6"],
  [".","6",".",".",".",".","2","8","."],
  [".",".",".","4","1","9",".",".","5"],
  [".",".",".",".","8",".",".","7","9"]
]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being 
    modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.

Note:

  • A Sudoku board (partially filled) could be valid but is not necessarily solvable.
  • Only the filled cells need to be validated according to the mentioned rules.
  • The given board contain only digits 1-9 and the character '.'.
  • The given board size is always 9x9.

题目链接:https://leetcode.com/problems/valid-sudoku/

法一:暴力法

暴力法很容易就能想到,先按行判断,再按列判断,再按方阵判断,一共3次遍历。

时间复杂度O(n),空间复杂度O(1)。

法二:空间换时间

只需要一次遍历,开辟空间来储存元素,比较简单的就是数组,查找方便。

时间复杂度O(n),空间复杂度O(n)。

网友用的哈希表存储:https://leetcode.wang/leetCode-36-Valid-Sudoku.html

class Solution {
public:
    bool isValidSudoku(vector<vector<char>>& board) {
        int len = board.size();
        int box[len * 3][10];
        for (int i=0;i<len*3;++i){
            memset(box,0,sizeof(box));
        }
        for(int i = 0; i<len;++i){
            for(int j = 0; j<len;++j){
                int tmp = board[i][j] - '0';
                int dot = '.' - '0';
                if(tmp==dot) continue;
                if(tmp>=1 && tmp<=9 
                   && box[i][tmp]!=1 && box[j+9][tmp]!=1
                  && box[int(i/3)*3+int(j/3)+18][tmp]!=1){
                    box[i][tmp]=1;
                    box[j+9][tmp]=1;
                    box[int(i/3)*3+int(j/3)+18][tmp]=1;
                }else return false;
            }
        }
        return true;
    }
};

代码很简单,但花了很多时间在数组初始化的调试上:

数组声明后,元素值是随机的,没有统一初始化就会导致后续的!=1判断出错。

void *memset(void *s,int c,size_t n)
总的作用:将已开辟内存空间 s 的首 n 个字节的值设为值 c。

 

ps.看来要找本书仔细复习下c++啦
 

【SCI复现】基于纳什博弈的多微网主体电热双层共享策略研究(Matlab代码实现)内容概要:本文围绕“基于纳什博弈的多微网主体电热双层共享策略研究”展开,结合Matlab代码实现,复现了SCI级别的科研成果。研究聚焦于多个微网主体之间的能源共享问题,引入纳什博弈理论构建双层优化模型,上层为各微网间的非合作博弈策略,下层为各微网内部电热联合优化调度,实现能源高效利用与经济性目标的平衡。文中详细阐述了模型构建、博弈均衡求解、约束处理及算法实现过程,并通过Matlab编程进行仿真验证,展示了多微网在电热耦合条件下的运行特性和共享效益。; 适合人群:具备一定电力系统、优化理论和博弈论基础知识的研究生、科研人员及从事能源互联网、微电网优化等相关领域的工程师。; 使用场景及目标:① 学习如何将纳什博弈应用于多主体能源系统优化;② 掌握双层优化模型的建模与求解方法;③ 复现SCI论文中的仿真案例,提升科研实践能力;④ 为微电网集群协同调度、能源共享机制设计提供技术参考。; 阅读建议:建议读者结合Matlab代码逐行理解模型实现细节,重点关注博弈均衡的求解过程与双层结构的迭代逻辑,同时可尝试修改参数或扩展模型以适应不同应用场景,深化对多主体协同优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值