高斯消元+概率期望 基本上是照着标程写的,发现原来用的高斯消元模板解不出来以后就用这个吧
推导过程:
对于这样的状态 表示从当前rating x 和 y 递推到
的期望。
因此我们很容易想到递推方程:
虽然能写出递推方程但是存在能推回自身的情况,所以不好做动态规划和搜索(当然搜索可以得到答案但是会漏很多情况而且会爆内存)。
所以我们可以得到一个方程组:
可以得到增广矩阵
然后进行高斯消元得到所有未知数的解 X0 为所求 D(0,0)
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<map>
#include <cmath>
#include<cstring>
#include <cassert>
#define maxn 220
#define INF (1e9)
#define eps 1e-10
typedef long long ll;
using namespace std;
double a[maxn][maxn], b[maxn];
int r[maxn], c[maxn];
void gauss_elimination(int n, double a[maxn][maxn], int r[maxn], int c[maxn]) {
for (int i = 0; i < n; ++i) {
r[i] = c[i] = i;
}
for (int k = 0; k < n; ++k) {
int ii = k, jj = k;
for (int i = k; i < n; ++i) {
for (int j = k; j < n; ++j) {
if (fabs(a[i][j]) > fabs(a[ii][jj])) {
ii = i;
jj = j;
}
}
}
swap(r[k], r[ii]);
swap(c[k], c[jj]);
for (int i = 0; i < n; ++i) {
swap(a[i][k], a[i][jj]);
}
for (int j = 0; j < n; ++j) {
swap(a[k][j], a[ii][j]);
}
if (fabs(a[k][k]) < eps) {
continue;
}
for (int i = k + 1; i < n; ++i) {
a[i][k] = a[i][k] / a[k][k];
for (int j = k + 1; j < n; ++j) {
a[i][j] -= a[i][k] * a[k][j];
}
}
}
}
void solve(int n, double a[maxn][maxn], int r[maxn], int c[maxn], double b[maxn]) {
static double x[maxn];
for (int i = 0; i < n; ++i) {
x[i] = b[r[i]];
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
x[i] -= a[i][j] * x[j];
}
}
for (int i = n - 1; i >= 0; --i) {
for (int j = n - 1; j > i; --j) {
x[i] -= a[i][j] * x[j];
}
if (fabs(a[i][i]) >= eps) {
x[i] /= a[i][i];
} else assert(fabs(x[i]) < eps);
}
for (int i = 0; i < n; ++i) {
b[c[i]] = x[i];
}
}
int pp = 0;
map<pair<int,int>, int> Ma;
void dfs(int x, int y) { // x >= y
if (x != 20 && !Ma.count(make_pair(x,y))) {
Ma[make_pair(x,y)] = pp++;
//cout << x << " " << y << " " << pp << endl;
if (min(y+1,20) >= x) {
dfs(y+1,x);
}
else if (min(y+1,20) < x) {
dfs(x, y+1);
}
dfs(x, max(y-2,0));
}
}
int doit(int x, int y) {
int Max = max(x, y);
int Min = min(x, y);
if (Max == 20) return -1;
return Ma[make_pair(Max,Min)];
}
int main() {
double p;
dfs(0,0);
while (scanf("%lf", &p) != EOF) {
memset(a, 0, sizeof(a));
for (__typeof(Ma.begin()) it = Ma.begin(); it != Ma.end(); ++ it) {
int x = (it->first).first;
int y = (it->first).second;
int from = it->second;
int to = doit(x, min(y+1,20));
if (to != -1) a[from][to] = p;
to = doit(x, max(y-2,0));
if (to != -1) a[from][to] = 1-p;
a[from][from] -= 1;
b[from] = -1;
}
gauss_elimination(pp,a,r,c);
solve(pp,a,r,c,b);
printf("%.6lf\n", b[0]);
}
}