POJ1191 - 棋盘分割
状态转移方程:
Dp( x1, y1, x2, y2, k ) 是指矩形 (x1, y1, x2, y2) 切 k 次后各矩形总平方和的最小值
Dp( x1, y1, x2, y2, k ) = min { Dp( x1, y1, a, y2, k-1 ) + cal(a+1, y1, x2, y2 ), Dp( a+1, y1, x2, y2, k-1 ) + cal( x1, y1, a, y2 ) } 横切
min { Dp( x1, y1, x2, b, k-1 ) + cal(x1, b+1, x2, y2 ), Dp( x1, b+1, x2, y2, k-1 ) + cal( x1, y1, x2, b ) } 纵切
边界条件:
Dp( x1, y1, x2, y2, k ) = cal( x1, y1, x2, y2 ) if ( x1 = x2 | y1 = y2 | k = 1)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define INF (int)(1e9)
#define MAXN 8
using namespace std;
int mat[9][9];
int dp[15][9][9][9][9];
int cal(int x1, int y1, int x2, int y2) {
int ret = (mat[x2][y2] - mat[x2][y1-1] - mat[x1-1][y2] + mat[x1-1][y1-1]);
return ret*ret;
}
int solve(int x1, int y1, int x2, int y2, int k) {
int a, b;
if (dp[x1][y1][x2][y2][k] != -1) return dp[x1][y1][x2][y2][k];
if (k == 1 || x1 == x2 || y1 == y2)
return dp[x1][y1][x2][y2][k] = cal(x1, y1, x2, y2);
int res = INF;
for (a = x1; a < x2; ++ a) {
res = min(res, min(solve(x1, y1, a, y2, k-1) + cal(a+1, y1, x2, y2), solve(a+1, y1, x2, y2, k-1) + cal(x1, y1, a, y2)));
}
for (b = y1; b < y2; ++ b) {
res = min(res, min(solve(x1, y1, x2, b, k-1) + cal(x1, b+1, x2, y2), solve(x1, b+1, x2, y2, k-1) + cal(x1, y1, x2, b)));
}
dp[x1][y1][x2][y2][k] = res;
return res;
}
int main() {
#ifdef LOCAL
freopen("data.in", "r", stdin);
#endif // LOCAL
int n;
while (cin >> n) {
memset(dp, -1, sizeof(dp));
memset(mat, 0, sizeof(mat));
double sum = 0.0;
for (int i = 1; i <= MAXN; ++ i) {
for (int j = 1; j <= MAXN; ++ j) {
cin >> mat[i][j];
sum += (double)mat[i][j];
}
}
for (int i = 1; i <= MAXN; ++ i) {
for (int j = 1; j <= MAXN; ++ j) {
mat[i][j] = mat[i][j] + mat[i-1][j] + mat[i][j-1] - mat[i-1][j-1];
}
}
sum /= (double)n; sum *= sum;
solve(1, 1, MAXN, MAXN, n);
double res = sqrt((double)dp[1][1][MAXN][MAXN][n]/n - sum);
printf("%.3f\n", res);
}
}