c++开源机器学习库(更新中)

本文汇总了多个C++机器学习库,包括mlpack、PLearn、Waffles、Torch7、SHARK、Dlib-ml、Eblearn等,并介绍了它们的特点及适用场景。此外还提供了一些资源链接供进一步研究。
部署运行你感兴趣的模型镜像

1)mlpack is a C++ machine learning library.

2)PLearn is a C++ library aimed at research and development in the field of statistical machine learning algorithms. Its originality is to allow to easily express, directly in C++ in a straightforward manner, complex non-linear functions to be optimized.

3)Waffles- C++ Machine Learning。

4)Torch7 provides a Matlab-like environment for state-of-the-art machine learning algorithms. It is easy to use and provides a very efficient implementation
5)SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides methods for linear and nonlinear optimization, in particular evolutionary and gradient-based algorithms, kernel-based learning algorithms and neural networks, and various other machine learning techniques. SHARK serves as a toolbox to support real world applications as well as research in different domains of computational intelligence and machine learning. The sources are compatible with the following platforms: Windows, Solaris, MacOS X, and Linux.

6)Dlib-ml is an open source library, targetedat both engineers and research scientists, which aims to provide a similarly rich environment fordeveloping machine learning software in the C++ language.

7) Eblearn is an object-oriented C++ library that implements various machine learning models, including energy-based learning, gradient-based learning for machine composed of multiple heterogeneous modules. In particular, the library provides a complete set of tools for building, training, and running convolutional networks.

8)  Machine Learning Open Source Software :Journal of Machine Learning Research: http://jmlr.csail.mit.edu/mloss/.

9) search in google: c++ site:jmlr.csail.mit.edu filetype:pdf  , Machine Learning Toolkit

10) SIGMA: Large-Scale and Parallel Machine-Learning Tool Kit

11) http://sourceforge.net/directory/science-engineering/ai/machinelearning/os:windows/freshness:recently-updated/


-------------   2012.9.12   ---------
12) ELF: ensemble learning framework。特点:c++,监督学习,使用了intel的IPP和MKL,training speed 和accuracy是主要目标。http://elf-project.sourceforge.net/
------------- 2012.11.03  ---------
13)   http://mloss.org/software/ machine learning open sources software。算是一个索引网站吧。
------------- 2013.4.09  ---------
15) SHOGUN: 使用了EIGEN(c++矩阵处理工具库)来处理相关的运算。并有多种(matlab、octave等)平台接口,不过不能在windows中编译和使用(想用的话,的自己改写了!)。EIGEN兼顾了处理速度(并行性)和准确性。所以说阅读shogun和elf中的代码可以学习如何在多核处理器平台上开发机器学习框架和算法库

from http://blog.youkuaiyun.com/genliu777/article/details/7396760

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值