聊天模型+调用工具

一、介绍

工具调用 允许聊天模型通过“调用工具”来响应给定的提示。
请记住,虽然“工具调用”这个名称暗示模型直接执行某些操作,但实际上并非如此!模型仅生成工具的参数,实际运行工具(或不运行)取决于用户。
工具调用是一种通用技术,可以从模型生成结构化输出,即使您不打算调用任何工具也可以使用它。 一个示例用例是  从非结构化文本中提取  
如果你想了解如何使用模型生成的工具调用来实际运行工具,请 查看此指南
LangChain实现了定义工具、将其传递给LLM以及表示工具调用的标准接口。 本指南将介绍如何将工具绑定到LLM,然后调用LLM生成这些参数。

二、定义工具模式

为了使模型能够调用工具,我们需要传入描述工具功能及其参数的工具模式。支持工具调用功能的聊天模型实现了一个 .bind_tools()方法,用于将工具模式传递给模型 工具模式可以作为Python函数(带有类型提示和文档字符串)、Pydantic模型、TypedDict类或LangChain 工具对象传入 。模型的后续调用将与提示一起传入这些工具模式。

2.1、Python函数

我们的工具模式可以是Python函数:
# The function name, type hints, and docstring are all part of the tool
# schema that's passed to the model. Defining good, descriptive schemas
# is an extension of prompt engineering and is an important part of
# getting models to perform well.
def add(a: int, b: int) -> int:
    """Add two integers.
    Args:
        a: First integer
        b: Second integer
    """
    return a + b

def multiply(a: int, b: int) -> int:
    """Multiply two integers.
    Args:
        a: First integer
        b: Second integer
    """
    return a * b

2.2、Pydantic 类

您可以等效地使用 Pydantic 定义没有附带函数的模式。
请注意,除非提供默认值,否则所有字段都是 必需 的。
from pydantic import BaseModel, Field

class add(BaseModel):
    """Add two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

class multiply(BaseModel):
    """Multiply two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

2.3、TypedDict 类

或者使用 TypedDict 和注解:
from typing_extensions import Annotated, TypedDict

class add(TypedDict):
    """Add two integers."""
    # Annotations must have the type and can optionally include a default value and description (in that order).
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

class multiply(TypedDict):
    """Multiply two integers."""
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

tools = [add, multiply]

要将这些模式实际绑定到聊天模型,我们将使用 . bind_tools() 方法。这将处理将 add 和 multiply 模式转换为模型所需的格式。工具模式将在每次调用模型时传递。
from typing_extensions import Annotated, TypedDict

class add(TypedDict):
    """Add two integers."""
    # Annotations must have the type and can optionally include a default value and description (in that order).
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

class multiply(TypedDict):
    """Multiply two integers."""
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

tools = [add, multiply]

import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

os.environ["LANGCHAIN_TRACING_V2"] = "false" 
os.environ["LANGCHAIN_API_KEY"] = "lsv2_pt_43fecabfdxxxxxxxx3f_d867d52ad7"
os.environ["OPENAI_API_KEY"] = "sk-ou6GFCEIVmN1hyxxxxxxxxxvCG06wf2gf0hzk8bEH1yfky"
os.environ["OPENAI_BASE_URL"] = "https://api.chatanywhere.tech/v1"

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12?"
llm_with_tools.invoke(query)   # AIMessage(content='' additional_kwargs={'tool_calls': [{'id': 'call_Bi5fN8ZMUybZ21t73PNLOJMZ', 'function': {'arguments': '{"a":3,"b":12}', 'name': 'multiply'}, 'type': 'function'}], 'refusal': None} response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 93, 'total_tokens': 110, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_0165350fbb', 'id': 'chatcmpl-BU68DeimtvpVvJRMBuZNJ7umZ3rfF', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-175e7e6f-1521-4f29-9366-d8ffd89cc939-0' tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_Bi5fN8ZMUybZ21t73PNLOJMZ', 'type': 'tool_call'}] usage_metadata={'input_tokens': 93, 'output_tokens': 17, 'total_tokens': 110, 'input_token_details': {}, 'output_token_details': {}})

二、工具调用

位于 .tool_calls属性中。 请注意,聊天模型可以同时调用多个工具。
一个 ToolCall 是一个包含 工具名称、参数值字典和(可选)标识符的类型字典。没有工具调用的消息 默认将此属性设置为空列表。
递。
from typing_extensions import Annotated, TypedDict

class add(TypedDict):
    """Add two integers."""
    # Annotations must have the type and can optionally include a default value and description (in that order).
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

class multiply(TypedDict):
    """Multiply two integers."""
    a: Annotated[int, ..., "First integer"]
    b: Annotated[int, ..., "Second integer"]

tools = [add, multiply]

import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

os.environ["LANGCHAIN_TRACING_V2"] = "false" 
os.environ["LANGCHAIN_API_KEY"] = "lsv2_pt_43fecabfdxxxxxxxx3f_d867d52ad7"
os.environ["OPENAI_API_KEY"] = "sk-ou6GFCEIVmN1hyxxxxxxxxxvCG06wf2gf0hzk8bEH1yfky"
os.environ["OPENAI_BASE_URL"] = "https://api.chatanywhere.tech/v1"

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls # [{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_yIaSYpzicpq0qq2nGP17rRa6', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_QkRTMs24z1tqBThqaT7aYXJ4', 'type': 'tool_call'}]

三、解析

如果需要,输出解析器可以进一步处理输出。例如,我们可以使用PydanticToolsParser将.tool_calls中填充的现有值转换为Pydantic对象:

from langchain_core.output_parsers import PydanticToolsParser
from pydantic import BaseModel, Field

class add(BaseModel):
    """Add two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

class multiply(BaseModel):
    """Multiply two integers."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

tools = [add, multiply]

import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
os.environ["LANGCHAIN_TRACING_V2"] = "false"       
os.environ["LANGCHAIN_API_KEY"] = "lsv2_pt_43fecabfdxxxxxxxx3f_d867d52ad7"
os.environ["OPENAI_API_KEY"] = "sk-ou6GFCEIVmN1hyxxxxxxxxxvCG06wf2gf0hzk8bEH1yfky"
os.environ["OPENAI_BASE_URL"] = "https://api.chatanywhere.tech/v1"

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"

chain = llm_with_tools | PydanticToolsParser(tools=[add, multiply])
chain.invoke(query)  # [multiply(a=3, b=12), add(a=11, b=49)]

四、将工具输出传递给模型

一些模型能够进行 工具调用 - 生成符合特定用户提供的模式的参数。如何使用这些工具调用来实际调用一个函数并正确地将结果传递回模型。
from langchain_core.tools import tool
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
os.environ["LANGCHAIN_TRACING_V2"] = "false"
os.environ["LANGCHAIN_TRACING_V2"] = "false"       
os.environ["LANGCHAIN_API_KEY"] = "lsv2_pt_43fecabfdxxxxxxxx3f_d867d52ad7"
os.environ["OPENAI_API_KEY"] = "sk-ou6GFCEIVmN1hyxxxxxxxxxvCG06wf2gf0hzk8bEH1yfky"
os.environ["OPENAI_BASE_URL"] = "https://api.chatanywhere.tech/v1"

# 1、定义工具和模型
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]
llm_with_tools = llm.bind_tools(tools)

# 2、让模型调用一个工具。我们将其添加到我们视为对话历史的消息列表中
from langchain_core.messages import HumanMessage
query = "What is 3 * 12? Also, what is 11 + 49?"
messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
print(ai_msg.tool_calls)  # [{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_ryygPdY6MvSXTCknxWvWYsam', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_ny8apPJsi6JIt5vTyVX9jWzz', 'type': 'tool_call'}]
messages.append(ai_msg)   # [HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?', additional_kwargs={}, response_metadata={}), AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ud08ErqoUzmlhHS1BNsIraly', 'function': {'arguments': '{"a": 3, "b": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_n3tn8papcS0b72rPBJ2EB91C', 'function': {'arguments': '{"a": 11, "b": 49}', 'name': 'add'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 88, 'total_tokens': 137, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_0165350fbb', 'id': 'chatcmpl-BU6RmaZsh9eZuaYV5slw7UgiZlbyv', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-5b06dbca-ef7b-4efe-a345-14f7ed0d7951-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_Ud08ErqoUzmlhHS1BNsIraly', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_n3tn8papcS0b72rPBJ2EB91C', 'type': 'tool_call'}], usage_metadata={'input_tokens': 88, 'output_tokens': 49, 'total_tokens': 137, 'input_token_details': {}, 'output_token_details': {}})]

# 3、使用模型填充的参数调用工具函数, 如果我们使用 ToolCall 调用 LangChain Tool,我们将自动获得一个可以反馈给模型的 ToolMessage:
for tool_call in ai_msg.tool_calls:
    selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_msg = selected_tool.invoke(tool_call)
    messages.append(tool_msg)
print( messages)          # [HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?', additional_kwargs={}, response_metadata={}), AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_TjaTyIBiyHnNiP7n859bVqKD', 'function': {'arguments': '{"a": 3, "b": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_5ygkXsff0tOfmwFRxhdDGh9v', 'function': {'arguments': '{"a": 11, "b": 49}', 'name': 'add'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 88, 'total_tokens': 137, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_0165350fbb', 'id': 'chatcmpl-BU6VfDechpfO5ib9ECj3YQNZNP382', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-42bd109e-a14b-4906-a8e0-67f43bd4d9a9-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_TjaTyIBiyHnNiP7n859bVqKD', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_5ygkXsff0tOfmwFRxhdDGh9v', 'type': 'tool_call'}], usage_metadata={'input_tokens': 88, 'output_tokens': 49, 'total_tokens': 137, 'input_token_details': {}, 'output_token_details': {}}), ToolMessage(content='36', name='multiply', tool_call_id='call_TjaTyIBiyHnNiP7n859bVqKD'), ToolMessage(content='60', name='add', tool_call_id='call_5ygkXsff0tOfmwFRxhdDGh9v')]

# 4、将使用工具结果调用模型。模型将使用此信息生成对我们原始查询的最终答案
llm_with_tools.invoke(messages)  # AIMessage(content='The result of \\( 3 \\times 12 \\) is 36, and the result of \\( 11 + 49 \\) is 60.' additional_kwargs={'refusal': None} response_metadata={'token_usage': {'completion_tokens': 34, 'prompt_tokens': 153, 'total_tokens': 187, 'completion_tokens_details': {'accepted_prediction_tokens': None, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': None}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_7a53abb7a2', 'id': 'chatcmpl-BU6a4YKU99PTEEig6bs98SQNFl7PR', 'finish_reason': 'stop', 'logprobs': None} id='run-e3ae02f2-836a-4b72-8304-21cee84bb6c8-0' usage_metadata={'input_tokens': 153, 'output_tokens': 34, 'total_tokens': 187, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})

五、参考

如何使用聊天模型调用工具 | LangChain中文网

如何将工具输出传递给聊天模型 | LangChain中文网

【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点探讨其系统建模与控制策略,结合Matlab代码与Simulink仿真实现。文章详细分析了无人机的动力学模型,特别是引入螺旋桨倾斜机构后带来的全驱动特性,使其在姿态与位置控制上具备更强的机动性与自由度。研究涵盖了非线性系统建模、控制器设计(如PID、MPC、非线性控制等)、仿真验证及动态响应分析,旨在提升无人机在复杂环境下的稳定性和控制精度。同时,文中提供的Matlab/Simulink资源便于读者复现实验并进一步优化控制算法。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真经验的研究生、科研人员及无人机控制系统开发工程师,尤其适合从事飞行器建模与先进控制算法研究的专业人员。; 使用场景及目标:①用于全驱动四旋翼无人机的动力学建模与仿真平台搭建;②研究先进控制算法(如模型预测控制、非线性控制)在无人机系统中的应用;③支持科研论文复现、课程设计或毕业课题开发,推动无人机高机动控制技术的研究进展。; 阅读建议:建议读者结合文档提供的Matlab代码与Simulink模型,逐步实现建模与控制算法,重点关注坐标系定义、力矩分配逻辑及控制闭环的设计细节,同时可通过修改参数和添加扰动来验证系统的鲁棒性与适应性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值