JUC并发编程工具温故而知新

本文介绍了Java并发工具Semaphore(信号量)、CyclicBarrier(栅栏锁)、CountDownLatch(闭锁)和Exchanger(交换器)的基本原理和实战应用,帮助理解如何控制并发访问、同步等待和线程间数据交换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JUC是指java.util.concurrent包,里面封装了解决并发编程的一些工具,下面温习一下CountDownLatch、CyclicBarrier、Semaphore、ExChanger的使用。
1、Semaphore
Semaphore,是信号量,作用于控制同时访问某些资源的线程数量,用在流量控制。源码如下
在这里插入图片描述


    /**
     * Creates a {@code Semaphore} with the given number of
     * permits and nonfair fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     */
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }

    /**
     * Creates a {@code Semaphore} with the given number of
     * permits and the given fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     * @param fair {@code true} if this semaphore will guarantee
     *        first-in first-out granting of permits under contention,
     *        else {@code false}
     */
    public Semaphore(int permits, boolean fair) {
        sync = fair ? new FairSync(permits) : new NonfairSync(permits);
    }

在源码中可以看到提供了两种构造方法,为非公平方式和公平方式,在构造方法中,均需要传入许可的数量,这个数量就是资源允许访问的最大线程数。

public class SemaphoreTest {

    public static void main(String[] args) {
        // 5辆班车
        Semaphore semaphore = new Semaphore(5);
        // 10组人,一组人一辆车
//        for (int i = 0; i < 10; i++) {
//            Car car = new Car(i, semaphore);
//            car.start();
//        }
        // 10组人,一组人一辆车
        for (int i = 0; i < 10; i++) {
            Bus bus = new Bus(i, semaphore);
            bus.start();
        }
    }

    static class Car extends Thread {

        public int num;
        public Semaphore semaphore;

        public Car(int num, Semaphore semaphore) {
            this.num = num;
            this.semaphore = semaphore;
        }

        @Override
        public void run() {
            try {
                // 堵塞式
                semaphore.acquire();
                System.out.printf("第%s辆班车出发了\n",num+1);
                Thread.sleep(new Random().nextInt(20) * 1000);
                semaphore.release();
                System.out.printf("第%s辆班车送完员工回来了\n",num+1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    static class Bus extends Thread {

        public int num;
        public Semaphore semaphore;

        public Bus(int num, Semaphore semaphore) {
            this.num = num;
            this.semaphore = semaphore;
        }

        @Override
        public void run() {
            try {
                // 非堵塞式
                boolean acquire = semaphore.tryAcquire();
                if (acquire) {
                    System.out.printf("第%s辆班车出发了\n",num+1);
                    Thread.sleep(new Random().nextInt(20) * 1000);
                    semaphore.release();
                    System.out.printf("第%s辆班车送完员工回来了\n",num+1);
                } else {
                    System.out.printf("未赶上第%s辆班车\n",num+1);
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

}

在这里插入图片描述
在这里插入图片描述
通过结果可知,acquire为堵塞式,tryAcquire为非堵塞式,可以通过返回的Boolean值判断是否执行。
2、CyclicBarrier
CyclicBarrier,是栅栏锁,作用于让一组线程达到某个屏障被堵塞,直到组内最后一个线程到达,然后屏障开发,所有线程继续执行。源码如下
在这里插入图片描述


    /**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and which
     * will execute the given barrier action when the barrier is tripped,
     * performed by the last thread entering the barrier.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @param barrierAction the command to execute when the barrier is
     *        tripped, or {@code null} if there is no action
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    /**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and
     * does not perform a predefined action when the barrier is tripped.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties) {
        this(parties, null);
    }

从源码中可以看到有两个构造方法,下面的构造方法实际上是调用了上面的构造方法,均需要传入int类型参数,这个值也是执行线程的数量,另一个参数是barrierAction线程,当屏障开发后需要执行的操作可以放在里面。

public class CyclicBarrierTest {

    private static ConcurrentHashMap<String, Long> resultMap = new ConcurrentHashMap<>();
    private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5,new CollectThread());

    public static void main(String[] args) {
        for (int i = 0; i < 5; i++) {
            SubTread subTread = new SubTread();
            subTread.start();
        }
    }

    static class CollectThread extends Thread {

        @Override
        public void run() {
            StringBuffer result = new StringBuffer();
            for (Map.Entry item : resultMap.entrySet()) {
                result.append("[" + item.getValue() + "]");
            }
            System.out.printf("result = %s\n",result);
        }
    }

    static class SubTread extends Thread {

        @Override
        public void run() {
            long id = Thread.currentThread().getId();
            resultMap.put(String.valueOf(id),id);
            try {
                System.out.printf("Thread_%s do business\n",id);
                Thread.sleep(new Random().nextInt(20) * 1000);
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}

在这里插入图片描述

通过结果可知,主线程创建了5个子线程,子线程执行完成后都调用了await,然后他们都在一个屏障前堵塞着,等到最后一个子线程也执行完成,调用await后,屏障开放,开始执行barrierAction线程里的操作。
3、CountDownLatch
CountDownLatch,是闭锁,作用于让一组线程等待其他线程完成之后才执行。源码如下
在这里插入图片描述


    /**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

从源码中看到,构造方法中需要传入int类型参数,这个值是被扣减的初始数量。

public class CountDownLatchTest {

    private static  CountDownLatch countDownLatch = new CountDownLatch(5);

    public static void main(String[] args) throws InterruptedException {
        // 启动业务线程
        BusinessTread businessTread = new BusinessTread();
        businessTread.start();
        // 启动初始化线程
        for (int i = 0; i < 5; i++) {
            InitTread initTread = new InitTread();
            initTread.start();
        }
        // 主线程进入等待
        countDownLatch.await();
        System.out.printf("main thread do ... \n");
    }

    static class InitTread extends Thread {

        @Override
        public void run() {
            long id = Thread.currentThread().getId();
            System.out.printf("Thread_%s init ... \n",id);
            try {
                Thread.sleep(new Random().nextInt(20) * 1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            countDownLatch.countDown();

        }
    }

    static class BusinessTread extends Thread {

        @Override
        public void run() {
            try {
                long id = Thread.currentThread().getId();
                System.out.printf("Thread_%s ready do  ... \n",id);
                countDownLatch.await();
                System.out.printf("Thread_%s do business ... \n",id);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

在这里插入图片描述
通过结果可知,业务线程和主线程等到5个初始化线程完成之后才开始执行。
4、ExChanger
ExChanger,是交换器,作用于线程之间交换数据,但比较受限,只能两个线程之间交换数据。源码如下
在这里插入图片描述


    /**
     * Creates a new Exchanger.
     */
    public Exchanger() {
        participant = new Participant();
    }

从源码中看到,构造方法没有入参,只是在创建时指定一下需要交换的数据的泛型。

public class ExchangerTest {

    private static final Exchanger<Set<String>> exchanger = new Exchanger<>();

    public static void main(String[] args) {
        new Thread(){
            @Override
            public void run() {
                Set<String> first = new HashSet<>();
                first.add("A");
                first.add("B");
                first.add("C");
                try {
                    Set<String> exchange = exchanger.exchange(first);
                    for (String s : exchange) {
                        System.out.println("first="+s);
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }.start();

        new Thread(){
            @Override
            public void run() {
                Set<String> second = new HashSet<>();
                second.add("1");
                second.add("2");
                second.add("3");
                try {
                    Set<String> exchange = exchanger.exchange(second);
                    for (String s : exchange) {
                        System.out.println("second="+s);
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }.start();

    }

}

在这里插入图片描述
通过结果可知,两个线程中的数据发生了交换。

小结:
CountDownLatch调用方法有await、countDown;
CycleBarrier调用方法有await;
Semaphore调用方法有acquire/tryAcquire、release;
CountDownLatch允许一个或多个线程,等待其他一组线程完成之后在继续执行;
CycleBarrier允许同一组线程之间等待,到达同一个屏障之后在继续执行;
Semaphore控制访问指定资源的线程数量;
Exchanger允许两个线程之间交换数据;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值