hadoop yarn-distributedshell

本文详细介绍了如何使用分布式Shell命令在MapReduce集群中运行命令,并解释了命令执行路径、工作目录验证、命令参数使用及资源配置的影响。此外,文章还讨论了分布式Shell命令与MapReduce应用程序之间的交互过程,包括容器的启动、资源配置限制、任务完成情况以及容器ID与应用尝试ID的关系。最后,文章深入分析了MapReduce配置中的最大和最小分配限制,以及如何在实际部署中解决资源不足的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  this application is introduced to run shell command in distributed nodes(containers) as it named,so it's is ealy and let's to go ahead.

 

1.run 'ls' command in containers

2.which path does that command run on ?

3.how to run meaningful commands depend on nodes

 

1.run 'ls' command in containers

  

hadoop jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar org.apache.hadoop.yarn.applications.distributedshell.Client -jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar -shell_command ls -num_containers 1 -container_memory 300 -master_memory 400 

   so the command 'ls' will run on any containers .and the result will like this:

 

more userlogs/application_1433385109839_0001/container_1433385109839_0001_01_000002/stdout
container_tokens
default_container_executor.sh
launch_container.sh
tmp

   why this file contains these content?u can lookk into the <nodemanager.log> 

 

2015-06-04 15:55:10,424 INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.localizer.LocalizedResource: Resource hdfs://localhost:9000/user/userxx/DistributedShell/application_1433403689317_0001/AppMaster.jar(->/usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/application_1433403689317_0001/filecache/10/AppMaster.jar) transitioned from DOWNLOADING to LOCALIZED
2015-06-04 15:55:10,502 INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.localizer.LocalizedResource: Resource hdfs://localhost:9000/user/userxx/DistributedShell/application_1433403689317_0001/shellCommands(->/usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/application_1433403689317_0001/filecache/11/shellCommands) transitioned from DOWNLOADING to LOCALIZED
2015-06-04 15:55:10,644 INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: launchContainer: [nice, -n, 0, bash, /usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/application_1433403689317_0001/container_1433403689317_0001_01_000001/default_container_executor.sh]

   u will see there is a file named 'defaultc_container_executor.sh' placed in the working dir(current container name).so the result from this command is correct.

 

 

2.which path does that command run on ?

  yes,the result is absoulte right,but how to verify to current working dir is lied in 'container_1433385109839_0001_01_000001'?

  of course,it 's simple too,u can use 'pwd' instead of 'ls' for the shell_command param.

 

hadoop jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar org.apache.hadoop.yarn.applications.distributedshell.Client -jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar -shell_command pwd -num_containers 1 -container_memory 300 -master_memory 400 

  now ,check out the stdout file,the result will like this:

 

/usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/application_1433403689317_0002/container_1433403689317_0002_01_000002

   but this time,the dir is bit differences from point 1,as this is the second app;) 

 

3.how to run meaningful commands depend on nodes

  but u if want to use a *custom script*(use some params in command params) to run on *node-specified*(ie different result for different nodes),u can use a script file to achieve this:

 

hadoop jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar org.apache.hadoop.yarn.applications.distributedshell.Client -jar share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.5.1.jar -shell_script ls-command.sh -num_containers 1 -container_memory 300 -master_memory 400

   and the file 'ls-command.sh' is simple: 

 

ls -al /tmp/

   yep,this file must be alllowed to be executable,so do it prior to run this command: 

chmod +x ls-command.sh

    

appendix:

A.  from the <nodemanager.log>,we found this info:

2015-06-04 15:55:17,223 INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.application.Application: Application application_1433403689317_0001 transitioned from RUNNING to APPLICATION_RESOURCES_CLEANINGUP
2015-06-04 15:55:17,223 INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Deleting absolute path : /usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/application_1433403689317_0001

  so if u check out the final dir appache,nothing will be there:

ll /usr/local/hadoop/data-2.5.1/tmp/nm-local-dir/usercache/userxx/appcache/
total 0

  

B.the AM is responsible for setupping the containers.yeah,finally the NM will startup the containers

more userlogs/application_1433385109839_0001/container_1433385109839_0001_01_000001/AppMaster.stderr 
15/06/04 12:26:09 INFO distributedshell.ApplicationMaster: Initializing ApplicationMaster
15/06/04 12:26:09 INFO distributedshell.ApplicationMaster: Application master for app, appId=1, clustertimestamp=1433385109839, attemptId=1
2015-06-04 12:26:09.755 java[1261:1903] Unable to load realm info from SCDynamicStore
15/06/04 12:26:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/06/04 12:26:10 INFO impl.TimelineClientImpl: Timeline service is not enabled
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Starting ApplicationMaster
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Executing with tokens:
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Kind: YARN_AM_RM_TOKEN, Service: , Ident: (org.apache.hadoop.yarn.security.AMRMTokenIdentifier@7950d786)
15/06/04 12:26:10 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8030
15/06/04 12:26:10 INFO impl.NMClientAsyncImpl: Upper bound of the thread pool size is 500
15/06/04 12:26:10 INFO impl.ContainerManagementProtocolProxy: yarn.client.max-nodemanagers-proxies : 500
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Max mem capabililty of resources in this cluster 8192
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Max vcores capabililty of resources in this cluster 32
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Received 0 previous AM's running containers on AM registration.
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Requested container ask: Capability[<memory:300, vCores:1>]Priority[0]
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Requested container ask: Capability[<memory:300, vCores:1>]Priority[0]
15/06/04 12:26:12 INFO impl.AMRMClientImpl: Received new token for : localhost:52226
15/06/04 12:26:12 INFO distributedshell.ApplicationMaster: Got response from RM for container ask, allocatedCnt=1
15/06/04 12:26:12 INFO distributedshell.ApplicationMaster: Launching shell command on a new container., containerId=container_1433385109839_0001_01_000002, containerNode=localhost:52226, containerNodeURI=localhost:8042, containerResourceMemory1024, containerResourceVirtualCores1
15/06/04 12:26:12 INFO distributedshell.ApplicationMaster: Setting up container launch container for containerid=container_1433385109839_0001_01_000002
15/06/04 12:26:12 INFO impl.NMClientAsyncImpl: Processing Event EventType: START_CONTAINER for Container container_1433385109839_0001_01_000002
15/06/04 12:26:12 INFO impl.ContainerManagementProtocolProxy: Opening proxy : localhost:52226
15/06/04 12:26:12 INFO impl.NMClientAsyncImpl: Processing Event EventType: QUERY_CONTAINER for Container container_1433385109839_0001_01_000002
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Got response from RM for container ask, completedCnt=1
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Got container status for containerID=container_1433385109839_0001_01_000002, state=COMPLETE, exitStatus=0, diagnostics=
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Container completed successfully., containerId=container_1433385109839_0001_01_000002
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Got response from RM for container ask, allocatedCnt=1
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Launching shell command on a new container., containerId=container_1433385109839_0001_01_000003, containerNode=localhost:52226, containerNodeURI=localhost:8042, containerResourceMemory1024, containerResourceVirtualCores1
15/06/04 12:26:13 INFO distributedshell.ApplicationMaster: Setting up container launch container for containerid=container_1433385109839_0001_01_000003
15/06/04 12:26:13 INFO impl.NMClientAsyncImpl: Processing Event EventType: START_CONTAINER for Container container_1433385109839_0001_01_000003
15/06/04 12:26:13 INFO impl.NMClientAsyncImpl: Processing Event EventType: QUERY_CONTAINER for Container container_1433385109839_0001_01_000003
15/06/04 12:26:14 INFO distributedshell.ApplicationMaster: Got response from RM for container ask, completedCnt=1
15/06/04 12:26:14 INFO distributedshell.ApplicationMaster: Got container status for containerID=container_1433385109839_0001_01_000003, state=COMPLETE, exitStatus=0, diagnostics=
15/06/04 12:26:14 INFO distributedshell.ApplicationMaster: Container completed successfully., containerId=container_1433385109839_0001_01_000003
15/06/04 12:26:14 INFO distributedshell.ApplicationMaster: Application completed. Stopping running containers
15/06/04 12:26:14 INFO impl.ContainerManagementProtocolProxy: Closing proxy : localhost:52226
15/06/04 12:26:14 INFO distributedshell.ApplicationMaster: Application completed. Signalling finish to RM
15/06/04 12:26:14 INFO impl.AMRMClientImpl: Waiting for application to be successfully unregistered.
15/06/04 12:26:15 INFO distributedshell.ApplicationMaster: Application Master completed successfully. exiting

   and always the AM will start previously at first container then others.

 

C.questions:my macbook pro is configured by 8g ram and i5(2.4g) two cores cpu,but i found i got a 32 vcores from above:

15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Max mem capabililty of resources in this cluster 8192
15/06/04 12:26:10 INFO distributedshell.ApplicationMaster: Max vcores capabililty of resources in this cluster 32

   anyone knows that?so i will dig into it tomorrow.. 

   after i recreated a new job on a big cluster(32g mem,8 cpus),these info were kept the same,so i thought these are the config values set in code or xml.

  today,i dig into 'CapacityScheduler#getMaximumAllocation()'

 

  public Resource getMaximumAllocation() {
    int maximumMemory = getInt(
        YarnConfiguration.RM_SCHEDULER_MAXIMUM_ALLOCATION_MB,
        YarnConfiguration.DEFAULT_RM_SCHEDULER_MAXIMUM_ALLOCATION_MB);
    int maximumCores = getInt(
        YarnConfiguration.RM_SCHEDULER_MAXIMUM_ALLOCATION_VCORES,
        YarnConfiguration.DEFAULT_RM_SCHEDULER_MAXIMUM_ALLOCATION_VCORES);
    return Resources.createResource(maximumMemory, maximumCores);
  }
  public Resource getMinimumAllocation() {
    int minimumMemory = getInt(
        YarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_MB,
        YarnConfiguration.DEFAULT_RM_SCHEDULER_MINIMUM_ALLOCATION_MB);
    int minimumCores = getInt(
        YarnConfiguration.RM_SCHEDULER_MINIMUM_ALLOCATION_VCORES,
        YarnConfiguration.DEFAULT_RM_SCHEDULER_MINIMUM_ALLOCATION_VCORES);
    return Resources.createResource(minimumMemory, minimumCores);
  }
    
casepropertydefault in codedefault in xmldescription 
maxxx.scheduler.maximum-allocation-mb 8g8g

max ram per container.

The maximum allocation for every container request at the RM,

    in MBs. Memory requests higher than this won't take effect,

 

    and will get capped to this value

 
 xx.scheduler.maximum-allocation-vcores 4cores32 coresmax vcores per container.

The maximum allocation for every container request at the RM,

    in terms of virtual CPU cores. Requests higher than this won't take effect,

    and will get capped to this value

 
minxx.scheduler.minimum-allocation-mb 1g1g  
 xx.scheduler.minimum-allocation-vcore1core1core  

 of course ,there are some questions lied there:

 1.if a node configed 4g,and sure a max-allocation-mb should be less or equals than 4g,but now,my task need 5g to run on it,how about it?i think this node will never run any tasks.so a fix resolution is necessary,e.g:

// A resource ask cannot exceed the max. 
    if (amMemory > maxMem) {
      LOG.info("AM memory specified above max threshold of cluster. Using max value."
          + ", specified=" + amMemory
          + ", max=" + maxMem);
      amMemory = maxMem;
    }

 

 

D.container id does not restrictly follow the app attempt id But app id

  container id

container_1433385109839_0001_01_000003

  app attempt id

application_1433385109839_0001_00001

  app id

application_1433385109839_0001

  since one app maybe contain multi attempts,so the container must bind to app id instead of attempt id for umbilical relationship.

 

 ref:

http://dongxicheng.org/mapreduce-nextgen/how-to-run-distributedshell/

DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it. 2025-06-18 16:50:39,734 INFO datanode.DataNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting DataNode STARTUP_MSG: host = LAPTOP-FK5QKFGQ/192.168.10.1 STARTUP_MSG: args = [] STARTUP_MSG: version = 3.2.2 STARTUP_MSG: classpath = D:\pyspark\Hadoop\hadoop-3.2.2\etc\hadoop;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\accessors-smart-1.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\animal-sniffer-annotations-1.17.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\asm-5.0.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\audience-annotations-0.5.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\avro-1.7.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\checker-qual-2.5.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-beanutils-1.9.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-cli-1.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-codec-1.11.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-collections-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-compress-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-configuration2-2.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-io-2.5.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-lang3-3.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-logging-1.1.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-math3-3.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-net-3.6.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\commons-text-1.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\curator-client-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\curator-framework-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\curator-recipes-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\dnsjava-2.1.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\error_prone_annotations-2.2.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\failureaccess-1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\gson-2.2.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\guava-27.0-jre.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\hadoop-annotations-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\hadoop-auth-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\htrace-core4-4.1.0-incubating.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\httpclient-4.5.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\httpcore-4.4.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\j2objc-annotations-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-annotations-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-core-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-core-asl-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-databind-2.9.10.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-jaxrs-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-mapper-asl-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jackson-xc-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\javax.activation-api-1.2.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\javax.servlet-api-3.1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jaxb-api-2.2.11.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jaxb-impl-2.2.3-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jcip-annotations-1.0-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jersey-core-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jersey-json-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jersey-server-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jersey-servlet-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jettison-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-http-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-io-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-security-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-server-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-servlet-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-util-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-webapp-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jetty-xml-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jsch-0.1.55.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\json-smart-2.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jsp-api-2.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jsr305-3.0.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jsr311-api-1.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\jul-to-slf4j-1.7.25.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-admin-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-client-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-common-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-core-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-crypto-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-identity-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-server-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-simplekdc-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerb-util-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerby-asn1-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerby-config-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerby-pkix-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerby-util-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\kerby-xdr-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\log4j-1.2.17.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\metrics-core-3.2.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\netty-3.10.6.Final.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\nimbus-jose-jwt-7.9.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\paranamer-2.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\protobuf-java-2.5.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\re2j-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\slf4j-api-1.7.25.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\slf4j-log4j12-1.7.25.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\snappy-java-1.0.5.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\stax2-api-3.1.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\token-provider-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\woodstox-core-5.0.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\lib\zookeeper-3.4.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\hadoop-common-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\hadoop-common-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\hadoop-kms-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\common\hadoop-nfs-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\accessors-smart-1.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\animal-sniffer-annotations-1.17.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\asm-5.0.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\audience-annotations-0.5.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\avro-1.7.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\checker-qual-2.5.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-beanutils-1.9.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-cli-1.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-codec-1.11.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-collections-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-compress-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-configuration2-2.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-daemon-1.0.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-io-2.5.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-lang3-3.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-logging-1.1.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-math3-3.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-net-3.6.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\commons-text-1.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\curator-client-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\curator-framework-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\curator-recipes-2.13.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\dnsjava-2.1.7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\error_prone_annotations-2.2.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\failureaccess-1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\gson-2.2.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\guava-27.0-jre.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\hadoop-annotations-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\hadoop-auth-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\htrace-core4-4.1.0-incubating.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\httpclient-4.5.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\httpcore-4.4.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\j2objc-annotations-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-annotations-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-core-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-core-asl-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-databind-2.9.10.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-jaxrs-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-mapper-asl-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jackson-xc-1.9.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\javax.activation-api-1.2.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\javax.servlet-api-3.1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jaxb-api-2.2.11.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jaxb-impl-2.2.3-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jcip-annotations-1.0-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jersey-core-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jersey-json-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jersey-server-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jersey-servlet-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jettison-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-http-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-io-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-security-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-server-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-servlet-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-util-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-util-ajax-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-webapp-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jetty-xml-9.4.20.v20190813.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jsch-0.1.55.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\json-simple-1.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\json-smart-2.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jsr305-3.0.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\jsr311-api-1.1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-admin-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-client-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-common-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-core-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-crypto-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-identity-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-server-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-simplekdc-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerb-util-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerby-asn1-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerby-config-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerby-pkix-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerby-util-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\kerby-xdr-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\leveldbjni-all-1.8.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\log4j-1.2.17.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\netty-3.10.6.Final.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\netty-all-4.1.48.Final.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\nimbus-jose-jwt-7.9.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\okhttp-2.7.5.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\okio-1.6.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\paranamer-2.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\protobuf-java-2.5.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\re2j-1.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\snappy-java-1.0.5.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\stax2-api-3.1.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\token-provider-1.0.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\woodstox-core-5.0.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\lib\zookeeper-3.4.13.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-client-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-client-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-httpfs-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-native-client-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-native-client-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-nfs-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-rbf-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\hdfs\hadoop-hdfs-rbf-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\aopalliance-1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\bcpkix-jdk15on-1.60.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\bcprov-jdk15on-1.60.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\ehcache-3.3.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\fst-2.50.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\geronimo-jcache_1.0_spec-1.0-alpha-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\guice-4.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\guice-servlet-4.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\HikariCP-java7-2.4.12.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\jackson-jaxrs-base-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\jackson-jaxrs-json-provider-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\jackson-module-jaxb-annotations-2.9.10.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\java-util-1.9.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\javax.inject-1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\jersey-client-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\jersey-guice-1.19.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\json-io-2.5.1.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\metrics-core-3.2.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\mssql-jdbc-6.2.1.jre7.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\objenesis-1.0.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\snakeyaml-1.16.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\lib\swagger-annotations-1.5.4.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-api-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-applications-distributedshell-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-applications-unmanaged-am-launcher-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-client-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-common-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-registry-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-applicationhistoryservice-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-common-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-nodemanager-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-resourcemanager-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-router-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-sharedcachemanager-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-tests-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-timeline-pluginstorage-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-server-web-proxy-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-services-api-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-services-core-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\yarn\hadoop-yarn-submarine-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\lib\hamcrest-core-1.3.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\lib\junit-4.11.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-app-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-common-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-core-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-hs-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-hs-plugins-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-jobclient-3.2.2-tests.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-jobclient-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-nativetask-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-shuffle-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-client-uploader-3.2.2.jar;D:\pyspark\Hadoop\hadoop-3.2.2\share\hadoop\mapreduce\hadoop-mapreduce-examples-3.2.2.jar STARTUP_MSG: build = Unknown -r 7a3bc90b05f257c8ace2f76d74264906f0f7a932; compiled by 'hexiaoqiao' on 2021-01-03T09:26Z STARTUP_MSG: java = 1.8.0_281 ************************************************************/ 2025-06-18 16:50:45,335 INFO checker.ThrottledAsyncChecker: Scheduling a check for [DISK]file:/D:/hadoop-3.2.2/data/datanode 2025-06-18 16:50:45,420 INFO impl.MetricsConfig: Loaded properties from hadoop-metrics2.properties 2025-06-18 16:50:45,483 INFO impl.MetricsSystemImpl: Scheduled Metric snapshot period at 10 second(s). 2025-06-18 16:50:45,484 INFO impl.MetricsSystemImpl: DataNode metrics system started 2025-06-18 16:50:46,677 INFO common.Util: dfs.datanode.fileio.profiling.sampling.percentage set to 0. Disabling file IO profiling 2025-06-18 16:50:46,689 INFO datanode.BlockScanner: Initialized block scanner with targetBytesPerSec 1048576 2025-06-18 16:50:46,692 INFO datanode.DataNode: Configured hostname is LAPTOP-FK5QKFGQ 2025-06-18 16:50:46,693 INFO common.Util: dfs.datanode.fileio.profiling.sampling.percentage set to 0. Disabling file IO profiling 2025-06-18 16:50:46,695 INFO datanode.DataNode: Starting DataNode with maxLockedMemory = 0 2025-06-18 16:50:46,709 INFO datanode.DataNode: Opened streaming server at /0.0.0.0:9866 2025-06-18 16:50:46,710 INFO datanode.DataNode: Balancing bandwidth is 10485760 bytes/s 2025-06-18 16:50:46,710 INFO datanode.DataNode: Number threads for balancing is 50 2025-06-18 16:50:46,741 INFO util.log: Logging initialized @7589ms to org.eclipse.jetty.util.log.Slf4jLog 2025-06-18 16:50:51,787 INFO server.AuthenticationFilter: Unable to initialize FileSignerSecretProvider, falling back to use random secrets. 2025-06-18 16:50:51,821 INFO http.HttpRequestLog: Http request log for http.requests.datanode is not defined 2025-06-18 16:50:51,828 INFO http.HttpServer2: Added global filter 'safety' (class=org.apache.hadoop.http.HttpServer2$QuotingInputFilter) 2025-06-18 16:50:51,829 INFO http.HttpServer2: Added filter static_user_filter (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to context datanode 2025-06-18 16:50:51,829 INFO http.HttpServer2: Added filter static_user_filter (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to context logs 2025-06-18 16:50:51,830 INFO http.HttpServer2: Added filter static_user_filter (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to context static 2025-06-18 16:50:51,848 INFO http.HttpServer2: Jetty bound to port 38751 2025-06-18 16:50:51,849 INFO server.Server: jetty-9.4.20.v20190813; built: 2019-08-13T21:28:18.144Z; git: 84700530e645e812b336747464d6fbbf370c9a20; jvm 1.8.0_281-b09 2025-06-18 16:50:51,865 INFO server.session: DefaultSessionIdManager workerName=node0 2025-06-18 16:50:51,865 INFO server.session: No SessionScavenger set, using defaults 2025-06-18 16:50:51,867 INFO server.session: node0 Scavenging every 660000ms 2025-06-18 16:50:51,874 INFO handler.ContextHandler: Started o.e.j.s.ServletContextHandler@2421cc4{logs,/logs,file:///D:/pyspark/Hadoop/hadoop-3.2.2/logs/,AVAILABLE} 2025-06-18 16:50:51,874 INFO handler.ContextHandler: Started o.e.j.s.ServletContextHandler@21ba0741{static,/static,file:///D:/pyspark/Hadoop/hadoop-3.2.2/share/hadoop/hdfs/webapps/static/,AVAILABLE} 2025-06-18 16:50:51,926 INFO util.TypeUtil: JVM Runtime does not support Modules 2025-06-18 16:50:51,932 INFO handler.ContextHandler: Started o.e.j.w.WebAppContext@43f82e78{datanode,/,file:///D:/pyspark/Hadoop/hadoop-3.2.2/share/hadoop/hdfs/webapps/datanode/,AVAILABLE}{file:/D:/pyspark/Hadoop/hadoop-3.2.2/share/hadoop/hdfs/webapps/datanode} 2025-06-18 16:50:51,939 INFO server.AbstractConnector: Started ServerConnector@1e097d59{HTTP/1.1,[http/1.1]}{localhost:38751} 2025-06-18 16:50:51,940 INFO server.Server: Started @12789ms 2025-06-18 16:50:52,540 INFO web.DatanodeHttpServer: Listening HTTP traffic on /0.0.0.0:9864 2025-06-18 16:50:52,545 INFO util.JvmPauseMonitor: Starting JVM pause monitor 2025-06-18 16:50:52,545 INFO datanode.DataNode: dnUserName = aaa 2025-06-18 16:50:52,546 INFO datanode.DataNode: supergroup = supergroup 2025-06-18 16:50:52,573 INFO ipc.CallQueueManager: Using callQueue: class java.util.concurrent.LinkedBlockingQueue, queueCapacity: 1000, scheduler: class org.apache.hadoop.ipc.DefaultRpcScheduler, ipcBackoff: false. 2025-06-18 16:50:52,583 INFO ipc.Server: Starting Socket Reader #1 for port 9867 2025-06-18 16:50:52,720 INFO datanode.DataNode: Opened IPC server at /0.0.0.0:9867 2025-06-18 16:50:52,729 INFO datanode.DataNode: Refresh request received for nameservices: null 2025-06-18 16:50:52,735 INFO datanode.DataNode: Starting BPOfferServices for nameservices: <default> 2025-06-18 16:50:52,740 INFO datanode.DataNode: Block pool <registering> (Datanode Uuid unassigned) service to localhost/127.0.0.1:9000 starting to offer service 2025-06-18 16:50:52,745 INFO ipc.Server: IPC Server Responder: starting 2025-06-18 16:50:52,745 INFO ipc.Server: IPC Server listener on 9867: starting 2025-06-18 16:50:52,954 INFO datanode.DataNode: Acknowledging ACTIVE Namenode during handshakeBlock pool <registering> (Datanode Uuid unassigned) service to localhost/127.0.0.1:9000 2025-06-18 16:50:52,956 INFO common.Storage: Using 1 threads to upgrade data directories (dfs.datanode.parallel.volumes.load.threads.num=1, dataDirs=1) 2025-06-18 16:50:52,965 INFO common.Storage: Lock on D:\hadoop-3.2.2\data\datanode\in_use.lock acquired by nodename 16808@LAPTOP-FK5QKFGQ 2025-06-18 16:50:52,970 WARN common.Storage: Failed to add storage directory [DISK]file:/D:/hadoop-3.2.2/data/datanode java.io.IOException: Incompatible clusterIDs in D:\hadoop-3.2.2\data\datanode: namenode clusterID = CID-0243def2-304c-4ffd-871c-57b2cdf0182f; datanode clusterID = CID-a6ff55fc-9daf-4605-8a53-edaae5a9f8de at org.apache.hadoop.hdfs.server.datanode.DataStorage.doTransition(DataStorage.java:744) at org.apache.hadoop.hdfs.server.datanode.DataStorage.loadStorageDirectory(DataStorage.java:294) at org.apache.hadoop.hdfs.server.datanode.DataStorage.loadDataStorage(DataStorage.java:407) at org.apache.hadoop.hdfs.server.datanode.DataStorage.addStorageLocations(DataStorage.java:387) at org.apache.hadoop.hdfs.server.datanode.DataStorage.recoverTransitionRead(DataStorage.java:559) at org.apache.hadoop.hdfs.server.datanode.DataNode.initStorage(DataNode.java:1748) at org.apache.hadoop.hdfs.server.datanode.DataNode.initBlockPool(DataNode.java:1684) at org.apache.hadoop.hdfs.server.datanode.BPOfferService.verifyAndSetNamespaceInfo(BPOfferService.java:392) at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:282) at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:829) at java.lang.Thread.run(Thread.java:748) 2025-06-18 16:50:52,973 ERROR datanode.DataNode: Initialization failed for Block pool <registering> (Datanode Uuid cd899db0-fd95-4996-8250-261d1d36dbda) service to localhost/127.0.0.1:9000. Exiting. java.io.IOException: All specified directories have failed to load. at org.apache.hadoop.hdfs.server.datanode.DataStorage.recoverTransitionRead(DataStorage.java:560) at org.apache.hadoop.hdfs.server.datanode.DataNode.initStorage(DataNode.java:1748) at org.apache.hadoop.hdfs.server.datanode.DataNode.initBlockPool(DataNode.java:1684) at org.apache.hadoop.hdfs.server.datanode.BPOfferService.verifyAndSetNamespaceInfo(BPOfferService.java:392) at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:282) at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:829) at java.lang.Thread.run(Thread.java:748) 2025-06-18 16:50:52,973 WARN datanode.DataNode: Ending block pool service for: Block pool <registering> (Datanode Uuid cd899db0-fd95-4996-8250-261d1d36dbda) service to localhost/127.0.0.1:9000 2025-06-18 16:50:52,974 INFO datanode.DataNode: Removed Block pool <registering> (Datanode Uuid cd899db0-fd95-4996-8250-261d1d36dbda) 2025-06-18 16:50:54,974 WARN datanode.DataNode: Exiting Datanode 2025-06-18 16:50:54,976 INFO datanode.DataNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down DataNode at LAPTOP-FK5QKFGQ/192.168.10.1 ************************************************************/
最新发布
06-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值