DP[0]

DP都是bottom up的,也有人用top down + cache的做法, top down就是递归地去做(当然你也可以用循环写,然后自己维护栈)。要想使用DP,一定要有最优子结构性质。

此外,如果求的是从最优解算出的最优值,特别适合DP,但如果还要求最优解,那么就得有备忘录了,备忘录占用的空间复杂度比较高,使得此时的DP不那么有优势了。

有空看看这个:http://www.hawstein.com/posts/dp-novice-to-advanced.html

1. Minimum Path Sum

递推公式:DP[i][j] = min(DP[i-1][ j], DP[i][j-1]) + grid[i][j]  i>0, j>0

    DP[i][j-1] + grid[i][j]  i=0, j>0

    DP[i-1][j] + grid[i][j]  i>0, j=0

                                    grid[0][0]  otherwise

code:

    int minPathSum(vector<vector<int> > &grid) {
        int m = grid.size();
        if (m == 0) return 0;
        int n = grid[0].size();
        vector<vector<int>> rs;
        for(int i = 0; i<m; ++i) {
            vector<int> tmp(n,0);
            rs.push_back(tmp);
        }
        
        //init left, up
        rs[0][0] = grid[0][0];
        for (int i=1; i<m; ++i) rs[i][0] += (rs[i-1][0] + grid[i][0]);
        for (int i=1; i<n; ++i) rs[0][i] += (rs[0][i-1] + grid[0][i]);
        
        for (int i=1; i<m; ++i) {
            for (int j=1; j<n; ++j)
                rs[i][j] += (min(rs[i-1][j], rs[i][j-1]) + grid[i][j]);  //递推公式
        }
        return rs[m-1][n-1];
    }

上面的空间复杂度为O(m*n), 可以有更space efficient的做法吗?

其实就是和上面的解法一样,但是用len = n的数组去存,因为我们在用矩阵存的时候其实在浪费空间,我们只用到了相邻的item的信息,并未用矩阵其他地方的信息,所以一维就够了

code:

    int minPathSum(vector<vector<int> > &grid) {
        int m = grid.size();
        if (m == 0) return 0;
        int n = grid[0].size();
        
        int *row = new int[n];
        row[0] = grid[0][0];
        for (int i=1; i<n; ++i) row[i] = row[i-1] + grid[0][i];
        for (int i=1; i<m; ++i) {
            row[0] += grid[i][0];
            for (int j=1; j<n; ++j) {
                row[j] = min(row[j-1], row[j]) + grid[i][j];
            }
        }
        int rs = row[n-1];
        delete [] row;
        return rs;
    }


2. Unique Paths

和上面的思路一模一样。

    int uniquePaths(int m, int n) {
        int *rs = new int[n];
        for (int i=0; i<n; ++i) rs[i] = 1;
        for (int i=1; i<m; ++i) {
            for (int j=1; j<n; ++j)
                rs[j] += rs[j-1];
        }
        int ret = rs[n-1];
        delete [] rs;
        return ret;
    }

3. Unique Paths II

和上面思路也一样,注意细节的处理

class Solution {
public:
	
	int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
	    vector<vector<int>> dp;
	    int m = obstacleGrid.size();
	    if (m == 0) return 0;
	    int n = obstacleGrid[0].size();
	    for (int i=0; i<m; ++i) {
	        vector<int> tmp(n, 1); dp.push_back(tmp);
	    }
	    
	    //init
	    for (int i=0; i<m; ++i) {
	        for (int j=0; j<n; ++j)
	            if (obstacleGrid[i][j] == 1) dp[i][j] = 0;
	    }
	    if (dp[0][0] == 0) return 0;
	    //init top: 111110000000000...
	    for (int i=1; i<n; ++i) dp[0][i] = dp[0][i] == 0 ? 0 : dp[0][i-1];
	    
	    //calculate
	    for (int i=1; i<m; ++i) {
	        dp[i][0] = dp[i][0] == 0 ? 0 : dp[i-1][0]; //init left
	        for (int j=1; j<n; ++j) dp[i][j] = dp[i][j] == 0 ? 0 : dp[i-1][j] + dp[i][j-1];
	    }
	    return dp[m-1][n-1];
	}
};


GJK计算碰撞代码的应用 //----------------------------------------------------------------------------- // Torque 3D // Copyright (C) GarageGames.com, Inc. // // The core algorithms in this file are based on code written // by G. van den Bergen for his interference detection library, // "SOLID 2.0" //----------------------------------------------------------------------------- #include "core/dataChunker.h" #include "collision/collision.h" #include "sceneGraph/sceneObject.h" #include "collision/convex.h" #include "collision/gjk.h" //---------------------------------------------------------------------------- static F32 rel_error = 1E-5f; // relative error in the computed distance static F32 sTolerance = 1E-3f; // Distance tolerance static F32 sEpsilon2 = 1E-20f; // Zero length vector static U32 sIteration = 15; // Stuck in a loop? S32 num_iterations = 0; S32 num_irregularities = 0; //---------------------------------------------------------------------------- GjkCollisionState::GjkCollisionState() { a = b = 0; } GjkCollisionState::~GjkCollisionState() { } //---------------------------------------------------------------------------- void GjkCollisionState::swap() { Convex* t = a; a = b; b = t; CollisionStateList* l = mLista; mLista = mListb; mListb = l; v.neg(); } //---------------------------------------------------------------------------- void GjkCollisionState::compute_det() { // Dot new point with current set for (int i = 0, bit = 1; i < 4; ++i, bit <<=1) if (bits & bit) dp[i][last] = dp[last][i] = mDot(y[i], y[last]); dp[last][last] = mDot(y[last], y[last]); // Calulate the determinent det[last_bit][last] = 1; for (int j = 0, sj = 1; j < 4; ++j, sj <<= 1) { if (bits & sj) { int s2 = sj | last_bit; det[s2][j] = dp[last][last] - dp[last][j]; det[s2][last] = dp[j][j] - dp[j][last]; for (int k = 0, sk = 1; k < j; ++k, sk <<= 1) { if (bits
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值