常见分布的随机特征
离散随机变量分布
-
伯努利分布(二点分布)
一个非常简单的试验是只有两个可能结果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复。为方便起见,记这两个可能的结果为0和1,下面的定义就是建立在这类试验基础之上的。
如果
随机变量X只取0和1两个值,并且相应的概率为:

X 服从 (0-1)分布或两点分布.记为X~b(1,p)
则称随机变量X服从参数为p的伯努利分布,若令q=1一p,则X的概率函数可写
为:

要证明该概率函数
确实是公式所定义的伯努利分布,只要注意到
,就很容易得证。


如果X服从参数为p的伯努利分布,则:



进而,X的矩母函数为:

二项分布
二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
二项分布(Binomial Distribution),即重复n次的
伯努利试验(Bernoulli Experiment),用ξ表示
随机试验的结果。如果事件发生的
概率是P,则不发生的概率q=1-p,N次
独立重复试验中发生K次的概率是

那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p)
数学期望:Eξ=np;
方差:Dξ=npq;
其中q=1-p
证明:
由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.
设
随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).
因X(k)相互独立,所以期望:

方差:

1.在每次试验中只有两种可能的结果,而且是互相对立的;
2.每次实验是独立的,与其它各次试验结果无关;
3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布。二项分布可
以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率。
以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率。
若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k)。C(n,k)表示组合数,即从n个事物中拿出k个的方法数
。
性质
1.当p=q时图形是对称的
例如,
,p=q=1/2,各项的概率可写作:


2.当p≠q时,直方图呈
偏态,p<q与p>q的偏斜方向相反。如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为
正态分布。故当n很大时,二项分布的概率可用正态分布的概率作为近似值。何谓n很大呢?一般规定:当p<q且np≥5,或p>q且nq≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
如果二项分布满足p<q,np≥5,(或p>q,np≥5)时,二项分布接近正态分布。这时,也仅仅在这时,二项分布的x变量(即成功的次数)具有如下性质:


即x变量具有μ =
n
p,的正态分布。
-
泊松分布
Poisson分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散
概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。
泊松分布的概率函数为:

泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布数学期望和方差:
泊松分布的
数学期望和
方差均为
特征函数为


柏松分布应用示例
泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:


例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×10
6
核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: