记录第二天

本指南提供了一条从机器学习(ML)到深度学习(DL)的清晰路径,涵盖了从基础知识到高级主题的全面内容。从Python编程、数学基础开始,逐步深入到Scikit-Learn和TensorFlow的应用,包括线性回归、分类、神经网络等关键概念和技术。通过实践项目和资源推荐,帮助读者建立扎实的技能基础。
部署运行你感兴趣的模型镜像

一个完整的学习路径。从 ML 到 DL、Scikit-Learn 到 TensorFlow,你需要这份学海指南。
当你试图接近某一个新主题或领域时,会感到困惑、迷失方向并且无路可循。要如何确保你能够深刻理解并且获得运用它的能力呢?当然是借鉴其他人的成熟路径,然后跟着他一步步学习,少走很多弯路。
当我们学习一些新的东西,尤其是那些内容广泛又复杂的事物时,避免混淆是很有必要的。
学习路径分为四部分:

  1. 先决条件
    Python
    Jupyter Notebook
    需要掌握的数学
    机器学习路径

  2. 用 Scikit-Learn 库进行机器学习
    为什么选择 Scikit-Learn?
    端到端机器学习项目
    线性回归
    分类
    训练模型
    支持向量机
    决策树
    集成学习和随机森林
    无监督学习
    当前总结和未来展望

  3. 用 TensorFlow 学习神经网络
    为什么选择 TensorFlow
    启动和运行 TensorFlow
    ANN——人工神经网络
    CNN——卷积神经网络
    RNN——循环神经网络
    训练网络:最佳实践
    自编码器
    强化学习

学习工具
机器学习项目
数据科学工具
博客/Youtube 频道/网站

首先就需要知道如何使用数值计算库 NumPy、可视化库 Matplotlib 和数据预处理库 Pandas,它们都是机器学习工程必不可少的工具。
所以重点是抓住主要概念并认识到其局限性和应用方面。

机器学习与 Scikit-Learn
Scikit-Learn 是最完整、最成熟以及完档最完整的机器学习任务库之一。
Scikit-Learn 利用功能强大和先进的模型实现「开箱即用」,并且为数据科学流程提供设施功能。
初次使用时,建议你过一遍下面的 Kaggle 案例,它目的是试图对泰坦尼克号上的乘客是否最有可能生还作出预测。

深度学习和 TensorFlow
自 2015 年开源以来,深度学习框架的天下就属于 TensorFlow。不论是 GitHub 的收藏量或 Fork 量,还是业界使用量都无可比拟地位列顶尖。
在了解 TensorFlow 后,我们可以迭代地学习用深度学习做工程
每一次深度挖掘一个专题,包括理论、教程、实现案例(例如 RNN 理论、RNN 教程和 RNN 实现案例)。
第二步循环多个主题后,再看一遍第一步的资源,抓住主要的推导与细节。

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值