TraceRT命令可视化实验-Windows版

善用大模型,效果图:

第一步,在cmd窗口中运行traceRT命令

如下:

C:\Users\Thinkpad>traceRT baidu.com

通过最多 30 个跃点跟踪

到 baidu.com [110.242.68.66] 的路由:

  1     *        *        *     请求超时。

  2    44 ms    45 ms    44 ms  172.17.0.42

  3     *       44 ms    44 ms  172.17.0.253

  4    43 ms    43 ms    46 ms  61.50.130.93

  5    74 ms    40 ms    45 ms  123.126.6.53

  6     *        *        *     请求超时。

  7     *        *        *     请求超时。

  8     *        *        *     请求超时。

  9    53 ms     *       53 ms  110.242.66.166

 10    53 ms    54 ms    53 ms  221.194.45.130

 11     *        *        *     请求超时。

 12     *        *        *     请求超时。

 13     *        *        *     请求超时。

 14     *        *        *     请求超时。

 15    54 ms    51 ms    50 ms  110.242.68.66

跟踪完成。

C:\Users\Thinkpad>traceRT bing.com

通过最多 30 个跃点跟踪

到 bing.com [204.79.197.200] 的路由:

  1     5 ms     *        3 ms  10.115.255.254

  2     4 ms     2 ms     *     172.17.0.42

  3     2 ms     2 ms     2 ms  172.17.0.253

  4    12 ms    20 ms     6 ms  61.50.130.93

  5     5 ms     6 ms     3 ms  123.126.6.53

  6     *        5 ms     *     221.216.106.101

  7     *        *        *     请求超时。

  8     *        *        *     请求超时。

  9     *       40 ms     *     219.158.3.158

 10    45 ms    41 ms    47 ms  219.158.4.2

 11    80 ms     *       80 ms  219.158.12.218

 12    80 ms    81 ms    73 ms  219.158.38.218

 13     *        *        *     请求超时。

 14    82 ms    75 ms    80 ms  13.104.185.160

 15     *        *        *     请求超时。

 16     *        *        *     请求超时。

 17    71 ms    72 ms    70 ms  a-0001.a-msedge.net [204.79.197.200]

跟踪完成。

第二步,用python绘图

!终端中的bash命令安装第三方库matplotlib和network

pip install matplotlib networkx

分别运行两段代码

import matplotlib.pyplot as plt
import networkx as nx

# Creating a directed graph
G = nx.DiGraph()

# Adding nodes and edges based on the traceRT data
nodes = ["Start", "172.17.0.42", "172.17.0.253", "61.50.130.93", "123.126.6.53", "Timeout", "Timeout", "Timeout",
         "110.242.66.166", "221.194.45.130", "Timeout", "Timeout", "Timeout", "Timeout", "110.242.68.66"]
edges = [(nodes[i], nodes[i+1]) for i in range(len(nodes)-1) if "Timeout" not in nodes[i]]

# Adding nodes and edges to the graph
G.add_nodes_from(nodes)
G.add_edges_from(edges)

# Drawing the graph
pos = nx.spring_layout(G)
plt.figure(figsize=(12, 8))

# Drawing nodes
nx.draw_networkx_nodes(G, pos, node_size=2000)
nx.draw_networkx_nodes(G, pos, nodelist=[node for node in nodes if "Timeout" in node], node_color='red', node_size=2000)

# Drawing edges
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
nx.draw_networkx_edges(G, pos, edgelist=[edge for edge in edges if "Timeout" not in edge[1]], width=2.0, alpha=0.5)

# Drawing node labels
nx.draw_networkx_labels(G, pos, font_size=10)

# Showing the plot
plt.title("Network Topology Diagram based on traceRT to baidu.com")
plt.show()

import matplotlib.pyplot as plt
import networkx as nx

# Data for the network topology
nodes = [
    "10.115.255.254", "172.17.0.42", "172.17.0.253", "61.50.130.93",
    "123.126.6.53", "221.216.106.101", "Timeout", "Timeout",
    "219.158.3.158", "219.158.4.2", "219.158.12.218", "219.158.38.218",
    "Timeout", "13.104.185.160", "Timeout", "Timeout",
    "a-0001.a-msedge.net [204.79.197.200]"
]

edges = [(nodes[i], nodes[i+1]) for i in range(len(nodes)-1)]

# Create graph
G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

# Draw the graph
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_color="skyblue", node_size=2000, font_size=10, font_weight="bold")
nx.draw_networkx_nodes(G, pos, nodelist=["Timeout", "Timeout", "Timeout", "Timeout", "Timeout"], node_color="red")

# Show the plot
plt.title("Network Topology to bing.com [204.79.197.200]")
plt.show()

感谢观看,可视化将会带来更好的学习体验!一起做实验,提高动手能力和编程能力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值