有理数类Rational实例

public class Rational extends Number implements Comparable {
	private long numerator=0;
	private long denominator=1;
	public Rational()
	{
		this(0,1);
	}
	public Rational(long numerator,long denominator)
	{
		long gcd=gcd(numerator,denominator);
		this.numerator=((denominator>0)?1:-1)*numerator/gcd;
		this.denominator=Math.abs(denominator)/gcd;
	}
	private static long gcd(long n,long d)
	{
		long n1=Math.abs(n);
		long n2=Math.abs(d);
		int gcd=1;
		for(int k=1;k<=n1&&k<=n2;k++)
		{
			if(n1%k==0&&n2%k==0)
				gcd=k;
		}
		return gcd;
	}
	public long getNumerator()
	{
		return numerator;
	}
	public long getDenominator()
	{
		return denominator;
	}
	public Rational add(Rational secondRational)
	{
		long n=numerator*secondRational.getDenominator()+denominator*secondRational.getNumerator();
		long d=denominator*secondRational.getDenominator();
		return new Rational(n,d);
	}
	public Rational subtract(Rational secondRational)
	{
		long n=numerator*secondRational.getDenominator()-denominator*secondRational.getNumerator();
		long d=denominator*secondRational.getDenominator();
		return new Rational(n,d);
	}
	public Rational multiply(Rational secondRational)
	{
		long n=numerator*secondRational.getNumerator();
		long d=denominator*secondRational.getDenominator();
		return new Rational(n,d);
	}
	public Rational divide(Rational secondRational)
	{
		long n=numerator*secondRational.getDenominator();
		long d=denominator*secondRational.getNumerator();
		return new Rational(n,d);
	}
	public String toString()
	{
		if(denominator==1)
		{
			return numerator+"";
		}else
			return numerator+"/"+denominator;
	}
	public boolean equals(Object parm1)
	{
		if((this.subtract((Rational)parm1)).getNumerator()==0)
				return true;
		else
			return false;
	}
	@Override
	public int compareTo(Object o) {
		// TODO Auto-generated method stub
		if((this.subtract((Rational)o)).getNumerator()>0)
			return 1;
		else if((this.subtract((Rational)o)).getNumerator()<0)
			return -1;
		else
			return 0;
	}

	@Override
	public int intValue() {
		// TODO Auto-generated method stub
		return (int)doubleValue();
	}

	@Override
	public long longValue() {
		// TODO Auto-generated method stub
		return (long)doubleValue();
	}

	@Override
	public float floatValue() {
		// TODO Auto-generated method stub
		return (float)doubleValue();
	}

	@Override
	public double doubleValue() {
		// TODO Auto-generated method stub
		return 1.0*numerator/denominator;
	}

}


public class TestRationalClass {

	public static void main(String[] args)
	{
		Rational r1=new Rational(4,2);
		Rational r2=new Rational(2,3);
		System.out.println(r1+"+"+r2+"="+r1.add(r2));
		System.out.println(r1+"-"+r2+"="+r1.subtract(r2));
		System.out.println(r1+"*"+r2+"="+r1.multiply(r2));
		System.out.println(r1+"/"+r2+"="+r1.divide(r2));
		System.out.println(r2+" is "+r2.doubleValue());
	}
}


(Rational Numbers) Create a class called Rational for performing arithmetic with fractions. Write a program to test your class. Use integer variables to represent the private instance variables of the class the numerator and the denominator. Provide a constructor that enables an object of this class to be initialized when it is declared. The constructor should store the fraction in reduced form. The fraction 2/4 is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denominator. Provide a no-argument constructor with default values in case no initializers are provided. Provide public methods that perform each of the following operations: a. Add two Rational numbers: The result of the addition should be stored in reduced form. b. Subtract two Rational numbers: The result of the subtraction should be stored in reduced form. c. Multiply two Rational numbers: The result of the multiplication should be stored in reduced form. d. Divide two Rational numbers: The result of the division should be stored in reduced form. e. Print Rational numbers in the form a/b, where a is the numerator and b is the denominator. f. Print Rational numbers in floating-point format. (Consider providing formatting capabilities that enable the user of the class to specify the number of digits of precision to the right of the decimal point.) – 提示: – 有理数是有分子、分母以形式a/b表示的数,其中a是分子,b是分母。例如,1/3,3/4,10/4。 – 有理数的分母不能为0,分子却可以为0。每个整数a等价于有理数a/1。有理数用于分数的精确计算中。例如1/3=0.0000…,它不能使用数据型double或float的浮点格式精确表示出来,为了得到准确结果,必须使用有理数。 – Java提供了整数和浮点数的数据型,但是没有提供有理数型。 – 由于有理数与整数、浮点数有许多共同特征,并且Number是数字包装的根,因此,把有理数Rational定义为Number的一个子是比较合适的。由于有理数是可比较的,那么Rational也应该实现Comparable接口。+下页图中描述了Rational已将其与Number和Comparable接口的关系。 –
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值