辗转相除法, 又名欧几里德算法(求最小公倍数的方法)

辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数最大公因子的算法。它是已知最古老的算法, 其可追溯至3000年前。

来源

设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用b除a,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1,……如此下去,直到能整除为止。其最后一个非零除数即为(a,b)。
原理
设两数为a、b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a mod b 为a除以b以后的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c//注意要a>=b
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd,(d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕;
#include <stdio.h>
int main(void)
{
	int a,b,k,t,i;
	printf("Please input a and b:");
	scanf("%d %d",&a,&b);
	if(a>1000||a<0||b>1000||b<0)
	{
		printf("Output:\nInput error!\n");
		return 0;
	}else 
	{
		if(a<b)
		{
			k=a;
			a=b;
			b=k;
		}
		t=a*b;
		while(b!=0)
		{
			i=a%b;	
			a=b;
			b=i;
		}
		printf("Output:%d\n",t/a);
		return 0;
	}
}

求最小公倍数算法

最小公倍数=两整数的乘积÷最大公约数


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值