泛函分析复习笔记(三)紧算子与Fredholm算子

本文介绍了Banach空间中的紧算子概念及其性质,包括紧算子的定义、性质和构造,如有穷秩算子和秩1算子。进一步讨论了Fredholm算子,解释了它们与紧算子的关系,以及Fredholm二择一原理和指数的概念。此外,还阐述了紧算子在无穷维空间中的谱分布特点和不变子空间的性质。

Chapter 3 紧算子与Fredholm算子

紧算子X,Y\mathscr{X}, \mathscr{Y}X,Y BBB 空间, A:X→YA: \mathscr{X} \rightarrow \mathscr{Y}A:XY 线性. 称 AAA 是紧算子, 如果 A(B1)‾\overline{A\left(B_{1}\right)}A(B1)Y\mathscr{Y}Y 中是紧集, 其中 B1B_{1}B1X\mathscr{X}X 中的单位球.
一切紧算子的集合记作 C(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y})C(X,Y), 当 X=Y\mathscr{X}=\mathscr{Y}X=Y 时, 记作 C(X)\mathfrak{C}(\mathscr{X})C(X)

注:AAA⇔\Leftrightarrow对于 X\mathscr{X}X 中的任意有界集 B,A(B)‾B, \overline{A(B)}B,A(B)Y\mathscr{Y}Y 中是紧集⇔\Leftrightarrow对任意有界点列 {xn}⊂X,{Axn}\left\{x_{n}\right\} \subset \mathscr{X},\left\{A x_{n}\right\}{xn}X,{Axn} 有收敛子列(紧等价于自列紧
性质:
(1) C(X,Y)⊂L(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y}) \subset \mathscr{L}(\mathscr{X}, \mathscr{Y})C(X,Y)L(X,Y)且闭
(2) C(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y})C(X,Y)是线性空间
(3) 设 A∈C(X,Y)A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})AC(X,Y), 又设 X0⊂X\mathscr{X}_{0} \subset \mathscr{X}X0X 是一个闭线性子空间, 那么 A0≜A∣X0∈C(X0,Y)A_{0} \triangleq A \mid \mathscr{X}_{0} \in \mathfrak{C}\left(\mathscr{X}_{0}, \mathscr{Y}\right)A0AX0C(X0,Y)
(4) 若 A∈C(X,Y)A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})AC(X,Y), 则 R(A)R(A)R(A) 可分
(5) 若 A∈L(X,Y)A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})AL(X,Y), 而 B∈L(Y,Z)B \in \mathscr{L}(\mathscr{Y}, \mathscr{Z})BL(Y,Z), 并且这两个算子中 有一个是紧的, 则 BA∈C(X,Z)B A \in \mathfrak{C}(\mathscr{X}, \mathscr{Z})BAC(X,Z).

全连续xn⇀x⟹Axn→Axx_{n} \rightharpoonup x \Longrightarrow A x_{n} \rightarrow A xxnxAxnAx

命题:紧算子必定全连续,自反空间中的全连续算子必定紧

定理:T∈C(X,Y)⟺T∗∈C(Y∗,X∗)T \in \mathfrak{C}(\mathscr{X}, \mathscr{Y}) \Longleftrightarrow T^{*} \in \mathbb{C}\left(\mathscr{Y}^*, \mathscr{X}^{*}\right)TC(X,Y)TC(Y,X)

紧算子的构造

有穷秩算子: 设 T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})TL(X,Y), 若 dim⁡R(T)<∞\operatorname{dim} R(T)<\inftydimR(T)<,一切有穷秩算子的集合记作 F(X,Y)F(\mathscr{X}, \mathscr{Y})F(X,Y)(显然,F⊂CF\subset CFC

秩1算子:设 f∈X∗,y∈Yf \in \mathscr{X}^{*}, y \in \mathscr{Y}fX,yY, 用 y⊗fy \otimes fyf 表示下列算子:x↦⟨f,x⟩y(∀x∈X)x \mapsto\langle f, x\rangle y \quad(\forall x \in \mathscr{X})xf,xy(xX),称为秩1算子

有穷秩算子的分解: T∈F(X,Y)T \in F(\mathscr{X}, \mathscr{Y})TF(X,Y)⇔\Leftrightarrow ∃yi∈Y\exists y_{i} \in \mathscr{Y}yiY 以 及 fi∈X∗(i=1,2,⋯ ,n)f_{i} \in \mathscr{X}^{*}(i=1,2, \cdots, n)fiX(i=1,2,,n), 使得T=∑i=1nyi⊗fiT=\sum_{i=1}^{n} y_{i} \otimes f_{i}T=i=1nyifi

有穷秩算子的逼近:

(1) 在Hilbert空间上,F(X,Y)‾=C(X,Y)\overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y})F(X,Y)=C(X,Y)(思路:在有穷ϵ\epsilonϵ-网上做正交投影)

(2) **在Banach空间上,如果存在一组Schauder基: {en}n=1∞⊂X\left\{e_{n}\right\}_{n=1}^{\infty} \subset \mathscr{X}{en}n=1XX\mathscr{X}X∀x∈X\forall x \in \mathscr{X}xX, 存在唯一的一个序列 {Cn(x)}\left\{C_{n}(x)\right\}{Cn(x)}, 使得
x=lim⁡N→∞∑n=1NCn(x)enx=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} C_{n}(x) e_{n}x=limNn=1NCn(x)en ,则也有F(X,Y)‾=C(X,Y)\overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y})F(X,Y)=C(X,Y),但是Schauder基并不一定存在

Reisz-Fredholm理论

需求:求解微分方程(形如:x(t)=∫01K(t,s)x(s)ds+y(t)x(t)=\int_0^1 K(t,s)x(s)ds+y(t)x(t)=01K(t,s)x(s)ds+y(t)),其定义了一个算子Tx=y,T=I−A,Tx=y, T=I-A,Tx=y,T=IA,TATATA

Fredholm二择一:关于该方程仅存在两种可能:(1)∀y∈L2[0,1]\forall y\in L^2[0,1]yL2[0,1],方程存在唯一解 (2)y=θy=\thetay=θ时,方程有非零解

对任意的 M⊂X,N⊂X∗M \subset \mathscr{X}, N \subset \mathscr{X}^{*}MX,NX, 记⊥M≜{f∈X∗∣⟨f,x⟩=0,∀x∈M},N⊥≜{x∈X∣⟨f,x⟩=0,∀f∈N}.\begin{gathered} { }^{\perp} M \triangleq\left\{f \in \mathscr{X}^{*} \mid\langle f, x\rangle=0, \forall x \in M\right\}, \\ N^{\perp} \triangleq\{x \in \mathscr{X} \mid\langle f, x\rangle=0, \forall f \in N\} . \end{gathered}M{fXf,x=0,xM},N{xXf,x=0,fN}.

又若 f∈X∗,x∈Xf \in \mathscr{X}^{*}, x \in \mathscr{X}fX,xX, 满足 ⟨f,x⟩=0\langle f, x\rangle=0f,x=0, 便简单地记作 f⊥xf \perp xfx

则:Fredholm理论T=I−A,AT=I-A,AT=IA,A紧=> (1)N(T)={θ}⟹R(T)=XN(T)=\{\theta\} \Longrightarrow R(T)=\mathscr{X}N(T)={θ}R(T)=X (2) σ(T)=σ(T∗)‾\sigma(T)=\overline{\sigma\left(T^{*}\right)}σ(T)=σ(T)(共轭),且dim⁡N(T)=dim⁡N(T∗)<∞\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)<\inftydimN(T)=dimN(T)< (3) R(T)=N(T∗)⊥,R(T∗)=⊥N(T)R(T)=N\left(T^{*}\right)^{\perp}, R\left(T^{*}\right)={ }^{\perp} N(T)R(T)=N(T),R(T)=N(T)

余维数codim⁡(M)=dim⁡(X/M)\operatorname{codim} (M)=\dim(\mathscr{X}/M)codim(M)=dim(X/M)

紧算子的谱理论

紧算子的谱分布:若 A∈C(X)A \in \mathfrak{C}(\mathscr{X})AC(X), 则:(1) 0∈σ(A)0 \in \sigma(A)0σ(A), 除非 dim⁡X<∞\operatorname{dim} \mathscr{X}<\inftydimX< (2) σ(A)\{0}=σp(A)\{0}\sigma(A) \backslash\{0\}=\sigma_{p}(A) \backslash\{0\}σ(A)\{0}=σp(A)\{0} (3) σp(A)\sigma_{p}(A)σp(A) 至多以 0 为聚点.

翻译:在无穷维空间上,只有三种可能:(1) σ(A)={0}\sigma(A)=\{0\}σ(A)={0} (2) σ(A)={0,λ1,λ2,⋯ ,λn}\sigma(A)=\left\{0, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}σ(A)={0,λ1,λ2,,λn} (3) σ(A)={λ1,λ2,⋯ ,λn,⋯ }\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots\right\}σ(A)={λ1,λ2,,λn,}, 其中 λn→0\lambda_{n} \rightarrow 0λn0

不变子空间:设 X\mathscr{X}X 是一个 BBB 空间, M⊂XM \subset \mathscr{X}MX ,若A(M)⊂MA(M) \subset MA(M)M则称为不变子空间

常见不变子空间:(1)平凡不变子空间:{θ},X\{\theta\},\mathscr{X}{θ},X (2) λ∈σp(A)\lambda \in \sigma_{p}(A)λσp(A), 即 λ\lambdaλAAA 的特征值, 则 N(λI−A)N(\lambda I-A)N(λIA) 为不变子空间 (3) ∀y∈X\forall y \in \mathscr{X}yX, 若记 Ly≜{P(A)y∣PL_{y} \triangleq\{P(A) y \mid PLy{P(A)yP 是任意多项式 }\}}, 则 LyL_{y}LyAAA的不变子空间.

定理:若 dim⁡X⩾2\operatorname{dim} \mathscr{X} \geqslant 2dimX2, 则 ∀A∈C(X),A\forall A \in \mathfrak{C}(\mathscr{X}), AAC(X),A 必有非平凡的闭不变子空间.

Fredholm算子: 设 X,Y\mathscr{X}, \mathscr{Y}X,Y 是 Banach 空间, T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})TL(X,Y) 称为一个 Fredholm 算子, 是指:
(1) R(T)R(T)R(T) 是闭的;
(2) dim⁡N(T)<∞\operatorname{dim} N(T)<\inftydimN(T)<;
(3) codim⁡R(T)<∞\operatorname{codim} R(T)<\inftycodimR(T)<
X→Y\mathscr{X} \rightarrow \mathscr{Y}XY 的一切 Fredholm 算子的全体记作 F(X,Y)\mathscr{F}(\mathscr{X}, \mathscr{Y})F(X,Y), 特别地, 当 Y=X\mathscr{Y}=\mathscr{X}Y=X 时, 记作 F(X)\mathscr{F}(\mathscr{X})F(X).

指标ind⁡(T)=dim⁡N(T)−codim⁡R(T)\operatorname{ind}(T) =\dim N(T)-\operatorname{codim} R(T)ind(T)=dimN(T)codimR(T),从而I−C,CI-C,CIC,C紧为一个Fredholm算子

则:左右移位算子的指标分别为正负1

Fredholm算子的结构

(1) 若 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})TF(X,Y), 则必有 S∈L(Y,X)S \in \mathscr{L}(\mathscr{Y}, \mathscr{X})SL(Y,X) 以 及 A1∈C(X),A2∈C(Y)A_{1} \in \mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y})A1C(X),A2C(Y), 使得ST=Ix−A1,TS=Iy−A2S T=I_{x}-A_{1}, T S=I_{y}-A_{2}ST=IxA1,TS=IyA2,其中 Ix,IyI_{x}, I_{y}Ix,Iy 分别表示 X\mathscr{X}XY\mathscr{Y}Y 上的恒同算子.
(2) 如果 T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})TL(X,Y), 又有 R1,R2∈L(Y,X)R_{1}, R_{2} \in \mathscr{L}(\mathscr{Y}, \mathscr{X})R1,R2L(Y,X) 以及 A1∈A_{1} \inA1 C(X),A2∈C(Y)\mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y})C(X),A2C(Y), 使得R1T=Ix−A1,TR2=Iy−A2R_{1} T=I_{x}-A_{1}, T R_{2}=I_{y}-A_{2}R1T=IxA1,TR2=IyA2,则 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})TF(X,Y)

R1,R2R_1,R_2R1,R2分别称为TTT左右正则化子,意义为:Fredholm算子在左右正则化子的作用下确实与I−紧算子I-紧算子I相同

定理:若 T1∈F(X,Y),T2∈F(Y,Z)T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Y}), T_{2} \in \mathscr{F}(\mathscr{Y}, \mathscr{Z})T1F(X,Y),T2F(Y,Z), 其中 X,Y\mathscr{X}, \mathscr{Y}X,Y, Z\mathscr{Z}Z 都是 Banach 空间, 则 T2T1∈F(X,Z)T_{2} T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Z})T2T1F(X,Z), 且ind⁡(T2T1)=ind⁡(T1)+ind⁡(T2)\operatorname{ind}\left(T_{2} T_{1}\right)=\operatorname{ind}\left(T_{1}\right)+\operatorname{ind}\left(T_{2}\right)ind(T2T1)=ind(T1)+ind(T2)

线性微扰稳定性:若 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})TF(X,Y), 则存在 ε>0\varepsilon>0ε>0, 使得当 S∈S \inS L(X,Y)\mathscr{L}(\mathscr{X}, \mathscr{Y})L(X,Y), 且 ∥S∥<ε\|S\|<\varepsilonS<ε 时, 有T+S∈F(X,Y)T+S \in \mathscr{F}(\mathscr{X}, \mathscr{Y})T+SF(X,Y),并且ind⁡(T+S)=ind⁡(T)\operatorname{ind}(T+S)=\operatorname{ind}(T)ind(T+S)=ind(T)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值