Chapter 3 紧算子与Fredholm算子
紧算子:X,Y\mathscr{X}, \mathscr{Y}X,Y BBB 空间, A:X→YA: \mathscr{X} \rightarrow \mathscr{Y}A:X→Y 线性. 称 AAA 是紧算子, 如果 A(B1)‾\overline{A\left(B_{1}\right)}A(B1) 在 Y\mathscr{Y}Y 中是紧集, 其中 B1B_{1}B1 是 X\mathscr{X}X 中的单位球.
一切紧算子的集合记作 C(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y})C(X,Y), 当 X=Y\mathscr{X}=\mathscr{Y}X=Y 时, 记作 C(X)\mathfrak{C}(\mathscr{X})C(X)
注:AAA紧⇔\Leftrightarrow⇔对于 X\mathscr{X}X 中的任意有界集 B,A(B)‾B, \overline{A(B)}B,A(B) 在 Y\mathscr{Y}Y 中是紧集⇔\Leftrightarrow⇔对任意有界点列 {xn}⊂X,{Axn}\left\{x_{n}\right\} \subset \mathscr{X},\left\{A x_{n}\right\}{xn}⊂X,{Axn} 有收敛子列(紧等价于自列紧)
性质:
(1) C(X,Y)⊂L(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y}) \subset \mathscr{L}(\mathscr{X}, \mathscr{Y})C(X,Y)⊂L(X,Y)且闭
(2) C(X,Y)\mathfrak{C}(\mathscr{X}, \mathscr{Y})C(X,Y)是线性空间
(3) 设 A∈C(X,Y)A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})A∈C(X,Y), 又设 X0⊂X\mathscr{X}_{0} \subset \mathscr{X}X0⊂X 是一个闭线性子空间, 那么 A0≜A∣X0∈C(X0,Y)A_{0} \triangleq A \mid \mathscr{X}_{0} \in \mathfrak{C}\left(\mathscr{X}_{0}, \mathscr{Y}\right)A0≜A∣X0∈C(X0,Y)
(4) 若 A∈C(X,Y)A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})A∈C(X,Y), 则 R(A)R(A)R(A) 可分
(5) 若 A∈L(X,Y)A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})A∈L(X,Y), 而 B∈L(Y,Z)B \in \mathscr{L}(\mathscr{Y}, \mathscr{Z})B∈L(Y,Z), 并且这两个算子中 有一个是紧的, 则 BA∈C(X,Z)B A \in \mathfrak{C}(\mathscr{X}, \mathscr{Z})BA∈C(X,Z).
全连续:xn⇀x⟹Axn→Axx_{n} \rightharpoonup x \Longrightarrow A x_{n} \rightarrow A xxn⇀x⟹Axn→Ax
命题:紧算子必定全连续,自反空间中的全连续算子必定紧
定理:T∈C(X,Y)⟺T∗∈C(Y∗,X∗)T \in \mathfrak{C}(\mathscr{X}, \mathscr{Y}) \Longleftrightarrow T^{*} \in \mathbb{C}\left(\mathscr{Y}^*, \mathscr{X}^{*}\right)T∈C(X,Y)⟺T∗∈C(Y∗,X∗)
紧算子的构造:
有穷秩算子: 设 T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})T∈L(X,Y), 若 dimR(T)<∞\operatorname{dim} R(T)<\inftydimR(T)<∞,一切有穷秩算子的集合记作 F(X,Y)F(\mathscr{X}, \mathscr{Y})F(X,Y)(显然,F⊂CF\subset CF⊂C)
秩1算子:设 f∈X∗,y∈Yf \in \mathscr{X}^{*}, y \in \mathscr{Y}f∈X∗,y∈Y, 用 y⊗fy \otimes fy⊗f 表示下列算子:x↦⟨f,x⟩y(∀x∈X)x \mapsto\langle f, x\rangle y \quad(\forall x \in \mathscr{X})x↦⟨f,x⟩y(∀x∈X),称为秩1算子
有穷秩算子的分解: T∈F(X,Y)T \in F(\mathscr{X}, \mathscr{Y})T∈F(X,Y)⇔\Leftrightarrow⇔ ∃yi∈Y\exists y_{i} \in \mathscr{Y}∃yi∈Y 以 及 fi∈X∗(i=1,2,⋯ ,n)f_{i} \in \mathscr{X}^{*}(i=1,2, \cdots, n)fi∈X∗(i=1,2,⋯,n), 使得T=∑i=1nyi⊗fiT=\sum_{i=1}^{n} y_{i} \otimes f_{i}T=∑i=1nyi⊗fi
有穷秩算子的逼近:
(1) 在Hilbert空间上,F(X,Y)‾=C(X,Y)\overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y})F(X,Y)=C(X,Y)(思路:在有穷ϵ\epsilonϵ-网上做正交投影)
(2) **在Banach空间上,如果存在一组Schauder基: {en}n=1∞⊂X\left\{e_{n}\right\}_{n=1}^{\infty} \subset \mathscr{X}{en}n=1∞⊂X 为 X\mathscr{X}X: ∀x∈X\forall x \in \mathscr{X}∀x∈X, 存在唯一的一个序列 {Cn(x)}\left\{C_{n}(x)\right\}{Cn(x)}, 使得
x=limN→∞∑n=1NCn(x)enx=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} C_{n}(x) e_{n}x=limN→∞∑n=1NCn(x)en ,则也有F(X,Y)‾=C(X,Y)\overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y})F(X,Y)=C(X,Y),但是Schauder基并不一定存在
Reisz-Fredholm理论:
需求:求解微分方程(形如:x(t)=∫01K(t,s)x(s)ds+y(t)x(t)=\int_0^1 K(t,s)x(s)ds+y(t)x(t)=∫01K(t,s)x(s)ds+y(t)),其定义了一个算子Tx=y,T=I−A,Tx=y, T=I-A,Tx=y,T=I−A,且TATATA紧
Fredholm二择一:关于该方程仅存在两种可能:(1)∀y∈L2[0,1]\forall y\in L^2[0,1]∀y∈L2[0,1],方程存在唯一解 (2)y=θy=\thetay=θ时,方程有非零解
对任意的 M⊂X,N⊂X∗M \subset \mathscr{X}, N \subset \mathscr{X}^{*}M⊂X,N⊂X∗, 记⊥M≜{f∈X∗∣⟨f,x⟩=0,∀x∈M},N⊥≜{x∈X∣⟨f,x⟩=0,∀f∈N}.\begin{gathered} { }^{\perp} M \triangleq\left\{f \in \mathscr{X}^{*} \mid\langle f, x\rangle=0, \forall x \in M\right\}, \\ N^{\perp} \triangleq\{x \in \mathscr{X} \mid\langle f, x\rangle=0, \forall f \in N\} . \end{gathered}⊥M≜{f∈X∗∣⟨f,x⟩=0,∀x∈M},N⊥≜{x∈X∣⟨f,x⟩=0,∀f∈N}.
又若 f∈X∗,x∈Xf \in \mathscr{X}^{*}, x \in \mathscr{X}f∈X∗,x∈X, 满足 ⟨f,x⟩=0\langle f, x\rangle=0⟨f,x⟩=0, 便简单地记作 f⊥xf \perp xf⊥x
则:Fredholm理论:T=I−A,AT=I-A,AT=I−A,A紧=> (1)N(T)={θ}⟹R(T)=XN(T)=\{\theta\} \Longrightarrow R(T)=\mathscr{X}N(T)={θ}⟹R(T)=X (2) σ(T)=σ(T∗)‾\sigma(T)=\overline{\sigma\left(T^{*}\right)}σ(T)=σ(T∗)(共轭),且dimN(T)=dimN(T∗)<∞\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)<\inftydimN(T)=dimN(T∗)<∞ (3) R(T)=N(T∗)⊥,R(T∗)=⊥N(T)R(T)=N\left(T^{*}\right)^{\perp}, R\left(T^{*}\right)={ }^{\perp} N(T)R(T)=N(T∗)⊥,R(T∗)=⊥N(T)
余维数:codim(M)=dim(X/M)\operatorname{codim} (M)=\dim(\mathscr{X}/M)codim(M)=dim(X/M)
紧算子的谱理论:
紧算子的谱分布:若 A∈C(X)A \in \mathfrak{C}(\mathscr{X})A∈C(X), 则:(1) 0∈σ(A)0 \in \sigma(A)0∈σ(A), 除非 dimX<∞\operatorname{dim} \mathscr{X}<\inftydimX<∞ (2) σ(A)\{0}=σp(A)\{0}\sigma(A) \backslash\{0\}=\sigma_{p}(A) \backslash\{0\}σ(A)\{0}=σp(A)\{0} (3) σp(A)\sigma_{p}(A)σp(A) 至多以 0 为聚点.
翻译:在无穷维空间上,只有三种可能:(1) σ(A)={0}\sigma(A)=\{0\}σ(A)={0} (2) σ(A)={0,λ1,λ2,⋯ ,λn}\sigma(A)=\left\{0, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}σ(A)={0,λ1,λ2,⋯,λn} (3) σ(A)={λ1,λ2,⋯ ,λn,⋯ }\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots\right\}σ(A)={λ1,λ2,⋯,λn,⋯}, 其中 λn→0\lambda_{n} \rightarrow 0λn→0
不变子空间:设 X\mathscr{X}X 是一个 BBB 空间, M⊂XM \subset \mathscr{X}M⊂X ,若A(M)⊂MA(M) \subset MA(M)⊂M则称为不变子空间
常见不变子空间:(1)平凡不变子空间:{θ},X\{\theta\},\mathscr{X}{θ},X (2) λ∈σp(A)\lambda \in \sigma_{p}(A)λ∈σp(A), 即 λ\lambdaλ 是 AAA 的特征值, 则 N(λI−A)N(\lambda I-A)N(λI−A) 为不变子空间 (3) ∀y∈X\forall y \in \mathscr{X}∀y∈X, 若记 Ly≜{P(A)y∣PL_{y} \triangleq\{P(A) y \mid PLy≜{P(A)y∣P 是任意多项式 }\}}, 则 LyL_{y}Ly 是AAA的不变子空间.
定理:若 dimX⩾2\operatorname{dim} \mathscr{X} \geqslant 2dimX⩾2, 则 ∀A∈C(X),A\forall A \in \mathfrak{C}(\mathscr{X}), A∀A∈C(X),A 必有非平凡的闭不变子空间.
Fredholm算子: 设 X,Y\mathscr{X}, \mathscr{Y}X,Y 是 Banach 空间, T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})T∈L(X,Y) 称为一个 Fredholm 算子, 是指:
(1) R(T)R(T)R(T) 是闭的;
(2) dimN(T)<∞\operatorname{dim} N(T)<\inftydimN(T)<∞;
(3) codimR(T)<∞\operatorname{codim} R(T)<\inftycodimR(T)<∞
X→Y\mathscr{X} \rightarrow \mathscr{Y}X→Y 的一切 Fredholm 算子的全体记作 F(X,Y)\mathscr{F}(\mathscr{X}, \mathscr{Y})F(X,Y), 特别地, 当 Y=X\mathscr{Y}=\mathscr{X}Y=X 时, 记作 F(X)\mathscr{F}(\mathscr{X})F(X).
指标:ind(T)=dimN(T)−codimR(T)\operatorname{ind}(T) =\dim N(T)-\operatorname{codim} R(T)ind(T)=dimN(T)−codimR(T),从而I−C,CI-C,CI−C,C紧为一个Fredholm算子
则:左右移位算子的指标分别为正负1
Fredholm算子的结构:
(1) 若 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})T∈F(X,Y), 则必有 S∈L(Y,X)S \in \mathscr{L}(\mathscr{Y}, \mathscr{X})S∈L(Y,X) 以 及 A1∈C(X),A2∈C(Y)A_{1} \in \mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y})A1∈C(X),A2∈C(Y), 使得ST=Ix−A1,TS=Iy−A2S T=I_{x}-A_{1}, T S=I_{y}-A_{2}ST=Ix−A1,TS=Iy−A2,其中 Ix,IyI_{x}, I_{y}Ix,Iy 分别表示 X\mathscr{X}X 和 Y\mathscr{Y}Y 上的恒同算子.
(2) 如果 T∈L(X,Y)T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})T∈L(X,Y), 又有 R1,R2∈L(Y,X)R_{1}, R_{2} \in \mathscr{L}(\mathscr{Y}, \mathscr{X})R1,R2∈L(Y,X) 以及 A1∈A_{1} \inA1∈ C(X),A2∈C(Y)\mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y})C(X),A2∈C(Y), 使得R1T=Ix−A1,TR2=Iy−A2R_{1} T=I_{x}-A_{1}, T R_{2}=I_{y}-A_{2}R1T=Ix−A1,TR2=Iy−A2,则 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})T∈F(X,Y)
R1,R2R_1,R_2R1,R2分别称为TTT的左右正则化子,意义为:Fredholm算子在左右正则化子的作用下确实与I−紧算子I-紧算子I−紧算子相同
定理:若 T1∈F(X,Y),T2∈F(Y,Z)T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Y}), T_{2} \in \mathscr{F}(\mathscr{Y}, \mathscr{Z})T1∈F(X,Y),T2∈F(Y,Z), 其中 X,Y\mathscr{X}, \mathscr{Y}X,Y, Z\mathscr{Z}Z 都是 Banach 空间, 则 T2T1∈F(X,Z)T_{2} T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Z})T2T1∈F(X,Z), 且ind(T2T1)=ind(T1)+ind(T2)\operatorname{ind}\left(T_{2} T_{1}\right)=\operatorname{ind}\left(T_{1}\right)+\operatorname{ind}\left(T_{2}\right)ind(T2T1)=ind(T1)+ind(T2)
线性微扰稳定性:若 T∈F(X,Y)T \in \mathscr{F}(\mathscr{X}, \mathscr{Y})T∈F(X,Y), 则存在 ε>0\varepsilon>0ε>0, 使得当 S∈S \inS∈ L(X,Y)\mathscr{L}(\mathscr{X}, \mathscr{Y})L(X,Y), 且 ∥S∥<ε\|S\|<\varepsilon∥S∥<ε 时, 有T+S∈F(X,Y)T+S \in \mathscr{F}(\mathscr{X}, \mathscr{Y})T+S∈F(X,Y),并且ind(T+S)=ind(T)\operatorname{ind}(T+S)=\operatorname{ind}(T)ind(T+S)=ind(T)
本文介绍了Banach空间中的紧算子概念及其性质,包括紧算子的定义、性质和构造,如有穷秩算子和秩1算子。进一步讨论了Fredholm算子,解释了它们与紧算子的关系,以及Fredholm二择一原理和指数的概念。此外,还阐述了紧算子在无穷维空间中的谱分布特点和不变子空间的性质。
1054

被折叠的 条评论
为什么被折叠?



