Cursors Be Gone!

本文介绍了一种避免使用SQL Server中游标的方法,并通过实例演示了如何将游标转换为传统循环,以此提高性能。通过对比游标和常规循环的执行计划,展示了游标的效率较低,尤其是在处理大量数据时。

Cursors Be Gone!

By Gaby Abed, 2008/12/24

 

I decided to make an attempt at a first article to help folks wean themselves off using cursors. It is quite easy to alter your code to use traditional loops and avoid the overhead of using cursors. For this example, the performance difference would be minimal but on cursors that work on massive tables, the overhead of a cursor definitely gets in the way and a conversion to more conventional while loops would be better.

Here is a simple example of a cursor that does a dbcc checkdb on each database (I know sp_msforeachdb would work as well, but this is mainly proof of concept).

declare @query varchar(100), @dbname sysname

declare BadCursor Cursor for
  select name from sys.databases
  where name not in ('master', 'model', 'msdb', 'tempdb')

open BadCursor
fetch next from BadCursor into @dbname
while @@fetch_status = 0
begin
select @query = 'dbcc checkdb(' + quotename(@dbname) + ')'
exec(@query)
fetch next from BadCursor into @dbname
end
close BadCursor
deallocate BadCursor go

To somehow get past the fetch next feature of a cursor, you will need to make a table. As this is an example with a small amount of rows, I will use the table variable @dblist, but for larger conversions, #temp tables would work just as well:

declare @query varchar(100),
@dbname sysname
declare @dblist table (dbname sysname)

insert into @dblist(dbname) select name from sys.databases
where name not in ('master', 'model', 'msdb', 'tempdb')

while (select count(*) from @dblist) > 0
begin
select top 1 @dbname = dbname from @dblist
select @query = 'dbcc checkdb(' + quotename(@dbname) + ')'
exec(@query)
delete from @dblist where dbname = @dbname
end go

When compared side by side when displaying the estimated execution plan, the Cursor based query was 69% compared to the 31% of the more conventional loop. So at least for this example, the cursor takes at least twice as long as the reguler while loop.

As you can see in the image below, while the actual allocation/deallocation of the cursor doesn't have much of an impact, the inefficient way the query is executed is what causes this to be slow. Imagine scaling the cursor to tables with millions of rows.

 

Zoom in   |   Open in new window
Zoom out   |   Open in new window

I hope this helps everyone realize the cost of doing business with cursors. While I readily admit the fetch next feature of cursors is attractive, don't be distracted by the dazzle and realize there is always a better alternative to using them.

Good luck folks.

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值