Monitoring Changes in Your Database Using DDL Triggers

本文介绍如何通过创建自定义表和DDL触发器来记录数据库的所有DDL操作,减轻跟踪和定位模式更改带来的麻烦。利用这种方法可以有效捕捉数据库级别的所有更改,并提供更好的追踪能力。

Introduction

Additions, deletions, or changes to objects in a database can cause a great deal of hardship and require a dba or developer to rewrite existing code that may reference affected entities. To make matters worse tracking down the problematic alteration(s) may be synonymous to locating the needle in the haystack. Utilizing a DDL trigger in conjunction with a single user created table, used to document such changes, can considerably minimize the headaches involved in tracking and locating schema changes.

Creating the Table and DDL TRIGGER

The first step in implementing such a tracking strategy is to create a table that will be used to record all DDL actions fired from within a database. The below code creates a table in the AdventureWorks sample database that will be used to hold all such DDL actions:

USE AdventureWorks
GO
CREATE TABLE AuditLog
(ID        INT PRIMARY KEY IDENTITY(1,1),
Command    NVARCHAR(1000),
PostTime   NVARCHAR(24),
HostName   NVARCHAR(100),
LoginName  NVARCHAR(100)
)
GO

After creating the table to hold our DDL events it is now time to create a DDL trigger that will be specific to the AdventureWorks database and will fire on all DDL_DATABASE_LEVEL_EVENTS:

CREATE TRIGGER Audit ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
DECLARE @data XML
DECLARE @cmd NVARCHAR(1000)
DECLARE @posttime NVARCHAR(24)
DECLARE @spid NVARCHAR(6)
DECLARE @loginname NVARCHAR(100)
DECLARE @hostname NVARCHAR(100)
SET @data = EVENTDATA()
SET @cmd = @data.value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', 'NVARCHAR(1000)')
SET @cmd = LTRIM(RTRIM(REPLACE(@cmd,'','')))
SET @posttime = @data.value('(/EVENT_INSTANCE/PostTime)[1]', 'NVARCHAR(24)')
SET @spid = @data.value('(/EVENT_INSTANCE/SPID)[1]', 'nvarchar(6)')
SET @loginname = @data.value('(/EVENT_INSTANCE/LoginName)[1]',
    'NVARCHAR(100)')
SET @hostname = HOST_NAME()
INSERT INTO dbo.AuditLog(Command, PostTime,HostName,LoginName)
 VALUES(@cmd, @posttime, @hostname, @loginname)
GO

The purpose of the trigger is to capture the EVENTDATA() that is created once the trigger fires and parse the data from the xml variable inserting it into the appropriate columns of our AuditLog table. The parsing of the EVENTDATA() is rather straight forward, except for when extracting the command text. The parsing of the command text includes the following code:

SET@cmd = LTRIM(RTRIM(REPLACE(@cmd,'','')))

The need for the LTRIM and RTRIM is to strip all leading and trailing white space while the REPLACE is used to remove the carriage return that is added when if using the scripting wizard from SSMS. This will provide the future ability to use SSRS string functions to further parse the command text to offer greater detail.

Once the table and trigger have been created you can test to assure that it is working properly:

UPDATE STATISTICS Production.Product
GO
CREATE TABLE dbo.Test(col INT)
GO
DROP TABLE dbo.Test
GO
-- View log table
SELECT *
FROM dbo.AuditLog
GO

The results of the above query should are shown below:

Zoom in   |   Open in new window

Conclusions

By creating a table to hold all DDL actions and a database level DDL trigger we can successfully capture all DDL level changes to our database and provide greater ability to track and monitor any such change.

As performance of any such action(s) is most often the deciding factor as to whether implement such change control, I have limited excessive parsing or formatting in the above trigger. Consider this the first step, documenting. Later I will post how to utilize reporting services to provide reports showing:

1. DDL action, CREATE, ALTER, DELETE, etc

2. The schema and object affected

3. Workstation executing DDL statements

4. Drill down report to show object dependencies

That will use the documenting objects created above to provide greater insight and detail external of your production environment.

By David Dye, 2008/10/02

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值