python - 删除重复项,保留最新日期,Pandas 数据框

文章讲述了如何使用Pandas数据框处理重复数据,特别是针对包含日期列的情况。通过`sort_values()`对日期进行排序,然后用`drop_duplicates()`函数,配合`keep=last`参数,可以保留每个STATION_ID的最新DATE_CHANGED记录。
部署运行你感兴趣的模型镜像

我有一个包含两列的 Pandas 数据框:一个日期时间列和一列表示站 ID 的整数。我需要一个具有以下修改的新数据框:

对于每组重复的 STATION_ID 值,保留具有 DATE_CHANGED 最新条目的行。如果 STATION_ID 的重复条目都包含相同的 DATE_CHANGED,则删除重复项并为 STATION_ID 保留一行。如果 STATION_ID 值没有重复项,则只需保留该行即可。

数据框(按STATION_ID排序):
DATE_CHANGED STATION_ID
0 2006-06-07 06:00:00 1
1 2000-09-26 06:00:00 1
2 2000-09-26 06:00:00 1
3 2000-09-26 06:00:00 1
4 2001-06-06 06:00:00 2
5 2005-07-29 06:00:00 2
6 2005-07-29 06:00:00 2
7 2001-06-06 06:00:00 2
8 2001-06-08 06:00:00 4
9 2003-11-25 07:00:00 4
10 2001-06-12 06:00:00 7
11 2001-06-04 06:00:00 8
12 2017-04-03 18:36:16 8
13 2017-04-03 18:36:16 8
14 2017-04-03 18:36:16 8
15 2001-06-04 06:00:00 8
16 2001-06-08 06:00:00 10
17 2001-06-08 06:00:00 10
18 2001-06-08 06:00:00 11
19 2001-06-08 06:00:00 11
20 2001-06-08 06:00:00 12
21 2001-06-08 06:00:00 12
22 2001-06-08 06:00:00 13
23 2001-06-08 06:00:00 13
24 2001-06-08 06:00:00 14
25 2001-06-08 06:00:00 14
26 2001-06-08 06:00:00 15
27 2017-08-07 17:48:25 15
28 2001-06-08 06:00:00 15
29 2017-08-07 17:48:25 15
… … …
157066 2018-08-06 14:11:28 71655
157067 2018-08-06 14:11:28 71656
157068 2018-08-06 14:11:28 71656
157069 2018-09-11 21:45:05 71664
157070 2018-09-11 21:45:05 71664
157071 2018-09-11 21:45:05 71664
157072 2018-09-11 21:41:04 71664
157073 2018-08-09 15:22:07 71720
157074 2018-08-09 15:22:07 71720
157075 2018-08-09 15:22:07 71720
157076 2018-08-23 12:43:12 71899
157077 2018-08-23 12:43:12 71899
157078 2018-08-23 12:43:12 71899
157079 2018-09-08 20:21:43 71969
157080 2018-09-08 20:21:43 71969
157081 2018-09-08 20:21:43 71969
157082 2018-09-08 20:21:43 71984
157083 2018-09-08 20:21:43 71984
157084 2018-09-08 20:21:43 71984
157085 2018-09-05 18:46:18 71985
157086 2018-09-05 18:46:18 71985
157087 2018-09-05 18:46:18 71985
157088 2018-09-08 20:21:44 71990
157089 2018-09-08 20:21:44 71990
157090 2018-09-08 20:21:44 71990
157091 2018-09-08 20:21:43 72003
157092 2018-09-08 20:21:43 72003
157093 2018-09-08 20:21:43 72003
157094 2018-09-10 17:06:18 72024
157095 2018-09-10 17:15:05 72024
[157096 rows x 2 columns]

DATE_CHANGED 是 dtype: datetime64[ns]

STATION_ID 是 dtype: int64

最佳答案:
df.sort_values(‘DATE_CHANGED’).drop_duplicates(‘STATION_ID’,keep=‘last’)
关于python - 删除重复项,保留最新日期,Pandas 数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52395820/

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值