Transformer的pytorch实现

该博客详细介绍了Transformer模型的实现,包括Encoder和Decoder的结构,每个部分如Multi-head attention、Position-wise Feed-Forward network子层的功能,并阐述了残差连接和Layer normalization的作用。在PyTorch中,模型的输出经过线性层和softmax计算损失。

Transformer架构

Transformer模型由encoder和decoder两部分组成,decoder输出的结果,经过一个线性层,然后计算softmax。

d_model = 512  # Embedding Size
d_ff = 2048 # FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_layers = 6  # number of Encoder of Decoder Layer
n_heads = 8  # number of heads in Multi-Head Attention
class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
    def forward(self, enc_inputs, dec_inputs):
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

实例化一个Transformer模型,输入为enc_inputs[batch_size,src_len],dec_inputs[batch_size,tgt_len]

model = Transformer()
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)

Encoder

Encoder分为embedding和6层Encoderlayer,首层的Encoderlayer输入为词embedding和位置embedding相加之和enc_outputs:[batch_size,seq_len,d_model],即(1,5,512)。
Attention_mask:[batch_size,seq_lenq,seq_len],即(1,5,5),其中one is masking。
用enc_self_attns列表保存每一层encoder的attention,列表长度为6。

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
        enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

6层Encoderlayer

每层Encoderlayer包括Multi-head attention和 position-wise Feed Forward,以及这两个子层之间有残差连接。

class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn
Multi-head attention子层

输入的Q,K,V均为enc_inputs:[batch_size,seq_len,d_model],即(1,5,512)
W_Q, W_K, W_V分别经过nn.liner(d_model,d_k*heads) , 虽然维数均为512,但经过线性变换后三者的值不再相等,q_s,k_s,v_s分别将W_Q, W_K, W_V变换为[batch_size,n_heads,seq_len,d_q/d_k/d_v]
Attn_mask加入head后变为[batch_size,n_heads,seq_len,seq_len],即(1,8,5,5)

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size x n_heads x len_k x d_v]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]

        # context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
        output = nn.Linear(n_heads * d_v, d_model)(context)
        return nn.LayerNorm(d_model)(output + residual), attn # output: [batch_size x len_q x d_model]

ScaledDotProductAttention:将q_s,k_s经过matmul;然后除以一个缩放因子;再进行sequence masking除去msaking部分的干扰,masking部分不需要给予attention;经过softmax后计算attention 权重;最后与v_s 进行matmul得到atttion后的输出context:[batch_size,n_heads,seq_len,d_v]和atten:[batch_size,n_heads,seq_len,seq_len]矩阵。

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn

将 context经过nn.linear变换为[batch_size,seq_len,d_model],(1,5,512),加上原先的输入(残差),进行 Layer normalization,输出enc_outputs(1,5,512), attn(1,8,5,5)

ontext = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
output = nn.Linear(n_heads * d_v, d_model)(context)
return nn.LayerNorm(d_model)(output + residual), attn # output: [batch_size x len_q x d_model]      
Position-wise Feed-Forward network子层

这是一个全连接网络,包含两个线性变换和一个非线性函数(实际上就是ReLU)。公式如下:
FFN(x) = max(0,xW_{1}+b_{1})W_{2}+b_{2}
论文中提到,这个公式还可以用两个核大小为1的一维卷积来解释,卷积的输入输出都是d_{model}=512,中间层的维度是d_{ff}=2048。
最后经过残差连接和 Layer normalization

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
    def forward(self, inputs):
        residual = inputs # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return nn.LayerNorm(d_model)(output + residual)

至此,第一层的Encoderlayer输出为enc_outputs(1,5,512),enc_self_attns.append(attn),其中attn为第一层的attention(1,8,5,5)
enc_outputs作为下一层的输入,经过6层Encoderlayer后,Encoder端的最后输出为:enc_outputs(1,5,512),enc_self_attns(6,1,8,5,5)

Decoder

Decoder的输入为dec_imputs:[batch_size,seq_len];enc_inputs:[batch_size,seq_len],非embedding,为词典index; enc_outputs:[batch_size,seq_len,d_model],为encoder端输出。

dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs,enc_outputs)

Decoder分为embedding、6层Decodelayer。
其中embedding与encoder相同,首层的Decoderlayer输入为词embedding和位置embedding相加之和enc_outputs:[batch_size,seq_len,d_model],即(1,5,512)

lass Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1, d_model),freeze=True)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
    def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns

6层Decoderlayer

每层Decoderlayer包括Multi-head attention(self-attention和dec-enc-attention)、 position-wise Feed Forward,以及这两个子层之间有残差连接。

lass DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs)
        return dec_outputs, dec_self_attn, dec_enc_attn

Multi-head attention子层

同Encoderlayer的Multi-head attention

Dec-enc attention子层

相比于Encoder多了dec-enc-aatention;且mask部分包括dec_self_attn_mask和Dec_enc_attn_mask(上1下0上三角矩阵)

Position-wise Feed-Forward network子层

同Encoderlayer的Position-wise Feed-Forward network

Decoder每一层输出为:
dec_outputs: [batch_size,seq_len,d_model] (1,5,512)
dec_self_attn:[batch_size,n_heads,seq_len,seq_len] (1,8,5,5)
dec_enc_attn:[batch_size,n_heads,seq_len,seq_len] (1,8,5,5)

经过6层Decoderlayer后的输出为:
dec_outputs:[batch_size,seq_len,d_model] (1,5,512)
dec_self_attn:[layers,batch_size,n_heads,seq_len,seq_len] (6,1,8,5,5)
dec_enc_attn:[layers,batch_size,n_heads,seq_len,seq_len] (6,1,8,5,5)

Linear

dec_logits = self.projection(dec_outputs) 
 self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)

Dec_logits为[batch_size x src_vocab_size x tgt_vocab_size]
至此,transformer model的输出为:
Outputs:[batch_size,src_vocab_size,target_vocab_size] —-> [-1,target_vocab_size]
enc_self_attns (6,1,8,5,5)
dec_self_attn:[layers,batch_size,n_heads,seq_len,seq_len] (6,1,8,5,5)
dec_enc_attn:[layers,batch_size,n_heads,seq_len,seq_len] (6,1,8,5,5)

Softmax

计算loss
target_batch为[batch_size,seq_len] (1,5)
loss = criterion(outputs, target_batch.contiguous().view(-1))
criterion = nn.CrossEntropyLoss()

参考代码:link.

### 回答1: Transformer是一种基于自注意力机制的神经网络模型,用于处理序列到序列的任务,如机器翻译、文本摘要等。PyTorch是一个流行的深度学习框架,提供了实现Transformer模型的工具和库。使用PyTorch实现Transformer模型可以方便地进行模型训练和调试,并且可以利用PyTorch的自动求导功能来优化模型参数。 ### 回答2: Transformer是一种用于序列建模的深度学习模型,它可以用于自然语言处理中的机器翻译、文本分类、语言模型等任务。它的设计思路是利用注意力机制来捕捉输入序列之间的关系。 PyTorch是一种基于Python的优秀的深度学习框架。在PyTorch中,可以使用预定义的模型类来实现Transformer模型。Transformer模型在PyTorch框架中实现的方法主要分为两种:自定义层和PyTorch自带模块。 自定义层 在PyTorch中,借助于nn.Module和nn.Parameter类,可以轻松地定义自己的模型层。下面是一个例子: ``` import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) q = self.q_linear(q).view(bs, -1, self.heads, self.d_k) k = self.k_linear(k).view(bs, -1, self.heads, self.d_k) v = self.v_linear(v).view(bs, -1, self.heads, self.d_k) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.permute(0, 2, 1, 3).contiguous() attention = attention.view(bs, -1, self.heads * self.d_k) return self.out(attention) ``` 此处定义了一个MultiHeadAttention类,并在初始化函数中定义各个线性层,而forward函数则为模型的前向传递代码。 其中,MultiHeadAttention中的q、k、v分别表示查询、键和值的输入张量,mask为特殊的掩码,用于限制注意力机制只看前面的信息。在forward函数中,我们首先把输入张量传递到各自的线性层中,然后按照头数分割,为每个头初始化查询、键和值(使用view函数),然后使用softmax归一化注意力分布,最后用权重矩阵与值矩阵的乘积形成输出。最后我们将头合并,返回输出张量。 这样,我们就可以通过自定义层的方式来定义Transformer模型。需要注意的是,在整个模型中,每一个自定义层应该加一次Layer Normalization。 使用PyTorch自带模块 除了使用自定义层,PyTorch还提供了一些预定义的模块类,用于模型的构建。下面是一个使用PyTorch自带模块搭建的Transformer模型: ``` import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.qkv = nn.Linear(d_model, 3 * d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) qkv = self.qkv(torch.cat([q, k, v], dim=-1)) qkv = qkv.view(bs, -1, self.heads, 3 * self.d_k).transpose(1, 2) q, k, v = qkv[:, :, :, :self.d_k], qkv[:, :, :, self.d_k:2*self.d_k], qkv[:, :, :, 2*self.d_k:] scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.transpose(1, 2).contiguous().view(bs, -1, self.heads * self.d_k) return self.out(attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, hidden_dim): super().__init__() self.fc1 = nn.Linear(d_model, hidden_dim) self.fc2 = nn.Linear(hidden_dim, d_model) def forward(self, x): return self.fc2(F.relu(self.fc1(x))) class Normalization(nn.Module): def __init__(self, d_model): super().__init__() self.d_model = d_model self.alpha = nn.Parameter(torch.ones(self.d_model)) self.bias = nn.Parameter(torch.zeros(self.d_model)) def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + 1e-6) + self.bias return norm class EncoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) def forward(self, x, mask=None): x2 = self.attention(x, x, x, mask=mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.feed_forward(x) x = self.norm2(x + self.dropout2(x2)) return x class Encoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ EncoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, src, mask=None): for layer in self.layers: src = layer(src, mask=mask) return src class DecoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention1 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.attention2 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm3 = Normalization(d_model=d_model) self.dropout3 = nn.Dropout(0.5) def forward(self, x, memory, src_mask=None, tgt_mask=None): x2 = self.attention1(x, x, x, mask=tgt_mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.attention2(x, memory, memory, mask=src_mask) x = self.norm2(x + self.dropout2(x2)) x2 = self.feed_forward(x) x = self.norm3(x + self.dropout3(x2)) return x class Decoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ DecoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, tgt, memory, src_mask=None, tgt_mask=None): for layer in self.layers: tgt = layer(tgt, memory, src_mask=src_mask, tgt_mask=tgt_mask) return tgt class Transformer(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers, src_vocab_size, tgt_vocab_size, max_length): super().__init__() self.encoder = Encoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.decoder = Decoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.src_embedding = nn.Embedding(src_vocab_size, d_model) self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model) self.out = nn.Linear(d_model, tgt_vocab_size) self.max_length = max_length def make_src_mask(self, src): src_mask = (src != 0) return src_mask def make_tgt_mask(self, tgt): tgt_pad_mask = (tgt != 0) tgt_len = tgt.shape[1] tgt_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len))) tgt_mask = tgt_pad_mask.unsqueeze(1) & tgt_sub_mask return tgt_mask def forward(self, src, tgt): src_mask = self.make_src_mask(src) tgt_mask = self.make_tgt_mask(tgt) src_embedded = self.src_embedding(src) tgt_embedded = self.tgt_embedding(tgt) memory = self.encoder(src_embedded, mask=src_mask) output = self.decoder(tgt_embedded, memory, src_mask=src_mask, tgt_mask=tgt_mask) output = self.out(output) return output ``` 与自定义层类似,在PyTorch实现Transformer模型也借助于nn.Module和nn.Parameter类定义自己的模型层。上述代码中,分别定义了MultiHeadAttention、PositionwiseFeedForward、Normalization、EncoderLayer、Encoder、DecoderLayer、Decoder和Transformer八个类,一共分为Encoder、Decoder和Transformer三部分。 对于Transformer模型而言,Encoder有若干个EncoderLayer层,每个EncoderLayer层中有一个MultiHeadAttention层和一个PositionwiseFeedForward层,而Decoder中也有若干个DecoderLayer层,每个DecoderLayer层中有两个MultiHeadAttention层和一个PositionwiseFeedForward层。在Encoder和Decoder的代码中,还分别添加了make_src_mask和make_tgt_mask函数,用于生成掩码。 最后,我们使用Transformer类将Encoder和Decoder组合在一起,并实现整个模型的前向传递。在前向传递的过程中,我们需要先通过词向量嵌入层将输入编码,然后在Encoder中将编码的输入信息进行处理,并在Decoder中将编码信息解码,最终通过输出层得到输出。整个模型都是基于PyTorch的自带模块组合而成的。 综上所述,通过自定义层或者利用PyTorch自带模块,我们可以很容易地实现Transformer模型,并使用PyTorch框架进行训练和预测等操作。 ### 回答3: transformer是自然语言处理领域一种重要的模型,它在机器翻译、文本生成、文本分类等任务中都有广泛的应用。PyTorch是一种流行的深度学习框架,它能够帮助我们更加方便地实现各种深度学习算法,包括transformertransformer模型的核心是自注意力机制,它可以让模型在处理序列数据时能够自动地关注到重要的信息。具体来说,transformer的自注意力机制包含了三个部分:查询(Q)、键(K)和值(V)。每个部分都是向量,其中查询向量表示我们希望关注到的信息,而键向量和值向量则表示序列中的每个位置都包含的信息。通过计算查询向量和所有键向量之间的相似度,我们可以得到一个权重向量,用来表示每个位置对于查询向量的重要程度。然后,我们可以将重要程度和对应位置的值向量加权求和,得到自注意力机制的输出。 在PyTorch实现transformer模型,我们可以借助官方提供的transformer模块,只需要定义好模型的输入、输出、层数等超参数,就能够很方便地搭建一个transformer模型。下面是一个实现transformer模型的样例代码: import torch.nn as nn import torch.nn.functional as F from torch.nn import TransformerEncoder, TransformerEncoderLayer class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output 其中,我们使用了PositionalEncoding模块来对输入的序列进行位置编码,EncoderLayer模块实现transformer的一个编码层,Encoder模块则包含了多个编码层,组成了整个transformer模型。在forward函数中,我们首先对输入进行嵌入和位置编码操作,然后使用transformer编码器进行编码,最后通过线性层得到模型的输出。 总之,PyTorch提供了方便的transformer模块实现方式,我们只需要定义好模型的超参数和组件,就可以快速搭建出一个强大的transformer模型来处理不同的NLP任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值