2、高阶函数 fun
2.1 示例 1 :映射 map
map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].
double(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).
2.2 示例 2 :循环 foreach
foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.
print_list(L) ->
foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L).
broadcast(L) ->
foreach(fun(Pid) -> Pid ! M end, L).
2.3 高阶函数语法
F = fun (Arg1, Arg2, ... ArgN) ->
...
end
语法1:同一模块中,把函数作为参数值传递
F = fun FunctionName/Arity
语法2:不同模块中,定义函数
F = {Module, FunctionName}
创建函数的不同方式:
-module(fun_test).
-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).
t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).
t3() -> map({?MODULE, double}, [1,2,3,4,5]).
double(X) -> X * 2.
函数求值的语法:
F(Arg1, Arg2, ..., Argn)
f(F, Args) when is_function(F) ->
apply(F, Args);
f(N, _) when is_integer(N) ->
N.
高阶函数是独特类型。有内建函数对其管理:
erlang:fun_info/1,2 查看fun的信息
erlang:fun_to_list/1 返回fun的文本表达式
erlang:check_process_code/2 如果进程内的funs依赖模块早期版本,返回true
2.4 高阶函数内部对变量的约束
(1) 出现在fun头部的变量,是未约束值的("fresh" variable);
(2) 变量定义在fun之前,并且出现在函数调用中,或者出现在fun的guard测试中的,其值约束于fun的外部;
(3) fun中的变量不可导出。
print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).
X是未经约束的新变量,Stream源于file:open。
把变量导入fun时,要受限制:有些模式匹配的操作,要放入guard表达式,并且不可写入fun的头部。
这是正确的:
f(...) ->
Y = ...
map(fun(X) when X == Y ->
;
(_) ->
...
end, ...)
...
下面是错误的:
f(...) ->
Y = ...
map(fun(Y) ->
;
(_) ->
...
end, ...)
...
2.5 高阶函数和模块lists
Funs and the Module Lists
The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported from
the module lists.
2.5.1 map
map(F, [H|T]) -> [F(H)|map(F, T)];
map(F, []) -> [].
> Double = fun(X) -> 2 * X end.
#Fun<erl_eval.6.72228031>
> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]
2.5.2 any
any(Pred, [H|T]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, []) ->
false.
> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl_eval.6.72228031>
> lists:any(Big, [1,2,3,4]).
false
> lists:any(Big, [1,2,3,12,5]).
true
2.5.3 all
all(Pred, [H|T]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []) ->
true.
all has the same arguments as any. It is true if the predicate applied to all elements in the list is true.
> lists:all(Big, [1,2,3,4,12,6]).
false
> lists:all(Big, [12,13,14,15]).
true
2.5.4 foreach
foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.
> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1
2
3
4
ok
2.5.5 foldl
foldl(F, Accu, [Hd|Tail]) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.
> L = ["I","like","Erlang"].
["I","like","Erlang"]
10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11
foldl works like a while loop in an imperative language:
L = ["I","like","Erlang"],
Sum = 0,
while( L != []){
Sum += length(head(L)),
L = tail(L)
end
2.5.6 mapfoldl
mapfoldl(F, Accu0, [Hd|Tail]) ->
{R,Accu1} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accu1, Tail),
{[R|Rs], Accu2};
mapfoldl(F, Accu, []) -> {[], Accu}.
> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X
end.
#Fun<erl_eval.6.72228031>
> Upcase_word =
fun(X) ->
lists:map(Upcase, X)
end.
#Fun<erl_eval.6.72228031>
> Upcase_word("Erlang").
"ERLANG"
> lists:map(Upcase_word, L).
["I","LIKE","ERLANG"]
Now we can do the fold and the map at the same time:
> lists:mapfoldl(fun(Word, Sum) ->
{Upcase_word(Word), Sum + length(Word)}
end, 0, L).
{["I","LIKE","ERLANG"],11}
2.5.7 filter
filter(F, [H|T]) ->
case F(H) of
true -> [H|filter(F, T)];
false -> filter(F, T)
end;
filter(F, []) -> [].
> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]
diff(L1, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).
intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).
2.5.8 takewhile
takewhile(Pred, [H|T]) ->
case Pred(H) of
true -> [H|takewhile(Pred, T)];
false -> []
end;
takewhile(Pred, []) ->
[].
> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]
2.5.9 dropwhile
dropwhile(Pred, [H|T]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|T]
end;
dropwhile(Pred, []) ->
[].
> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]
2.5.10 splitwith
splitwith(Pred, L) ->
splitwith(Pred, L, []).
splitwith(Pred, [H|T], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [H|L]);
false -> {reverse(L), [H|T]}
end;
splitwith(Pred, [], L) ->
{reverse(L), []}.
> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}
2.6 函数返回的值也是函数
Funs Which Return Funs
So far, this section has only described functions which take funs as arguments. It is also possible to write more
powerful functions which themselves return funs. The following examples illustrate these type of functions.
2.6.1 简单的高阶函数
> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl_eval.6.72228031>
> Add6 = Adder(6).
#Fun<erl_eval.6.72228031>
> Add6(10).
16
2.6.2 无限列表
-module(lazy).
-export([ints_from/1]).
ints_from(N) ->
fun() ->
[N|ints_from(N+1)]
end.
> XX = lazy:ints_from(1).
#Fun<lazy.0.29874839>
> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()).
1
> Y = tl(XX()).
#Fun<lazy.0.29874839>
> hd(Y()).
2
2.6.3 解析算法(Parsing)
解析函数:
Parser(Toks) -> {ok, Tree, Toks1} | fail
Toke是解析对象(符号)的列表。Tree是解析树,Toks1是树的尾节点。解析失败返回fail。
要解析的语法:
(a | b) & (c | d)
pconst(X) ->
fun (T) ->
case T of
[X|T1] -> {ok, {const, X}, T1};
_ -> fail
end
end.
This function can be used as follows:
> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).
{ok,{const,a},[b,c]}
> P1([x,y,z]).
fail
Next, we define the two higher order functions pand and por which combine primitive parsers to produce more complex
parsers. Firstly pand:
pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1) of
{ok, R2, T2} ->
{ok, {'and', R1, R2}};
fail ->
fail
end;
fail ->
fail
end
end.
Given a parser P1 for grammar G1, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the grammar which
consists of sequences of tokens which satisfy G1 followed by sequences of tokens which satisfy G2.
por(P1, P2) returns a parser for the language described by the grammar G1 or G2.
por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {'or',1,R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2,R1}, T1};
fail ->
fail
end
end
end.
The original problem was to parse the grammar (a | b) & (c | d). The following code addresses this problem:
grammar() ->
pand(
por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).
The following code adds a parser interface to the grammar:
parse(List) ->
(grammar())(List).
We can test this parser as follows:
> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).
fail