题解 | Subarray-2019牛客暑期多校训练营第二场J题

本文解析一道算法竞赛题,通过数据结构和暴力搜索策略解决求解给定数组中正和子数组对数的问题。介绍如何预处理数组、筛选有用区间并计算答案,适用于对算法竞赛和数据结构感兴趣的读者。

题目来源于牛客竞赛:https://ac.nowcoder.com/acm/contest/discuss
题目描述:
Given an array A of length 109 containing only 1 and -1. The number of 1 is not more than 107.
Please count how many pairs of (l, r) satisfy ∑i=1rAi\displaystyle\sum_{i=1}^{r} A_ii=1rAi>0 and 0 ≤l ≤r ≤109.

输入描述:
The first line of input contains an integers N indicating how many segments of A is 1.
Following N lines each contains two space-separated integers li,ri indicating that Aj is 1 for li ≤j ≤ri

0<n≤106
li≤ri
li+1<li+1 for 0≤i<n-1
0≤l0
rn-1<109
∑(ri−li+1)\sum_{}^{} (r_i-l_i+1)(rili+1)≤107

输出描述:
Output one line containing an integer representing the answer.

示例1:
输入
1
0 1

输出
4

示例2:
输入
1
1 2

输出
5

示例3:
输入
2
0 1
3 4

输出
16

题解:
• Data structure, brute force
Since there are at most 107 ones, possible index included in any positive sum segment will be O(107).
We can first find out all these indexes. Then, for each possible indexes range we can compute the result almost brute forcely.

代码:

#include <bits/stdc++.h>
using namespace std;
#define M 2048576
#define TM 30485777
#define BS 20000020
const int INT = 999999999;
int n , ptr;
vector< pair< pair<int,int> , int > > vv;
inline int value( int x ){
  while( ptr < n && vv[ ptr ].first.second < x ) ptr ++;
  return vv[ ptr ].second;
}
void init(){
  scanf( "%d" , &n );
  int pre = 0;
  for( int i = 0 ; i < n ; i ++ ){
    int li , ri; scanf( "%d%d" , &li , &ri );
    if( pre < li ) vv.push_back( { { pre , li - 1 } , -1 } );
    vv.push_back( { { li , ri } , +1 } );
    pre = ri + 1;
  }
  if( pre <= INT ) vv.push_back( { { pre , INT } , -1 } );
}
int ps[ M ] , ss[ M ] , pm[ M ] ,  sm[ M ];
void pre_build(){
  n = (int)vv.size();
  for( int i = 0 ; i < n ; i ++ ){
    ss[ i ] = ps[ i ] = ( vv[ i ].first.second - vv[ i ].first.first + 1 ) *
                        vv[ i ].second;
    if( i ) ps[ i ] += ps[ i - 1 ];
  }
  for( int i = n - 2 ; i >= 0 ; i -- )
    ss[ i ] += ss[ i + 1 ];
  for( int i = 0 ; i < n ; i ++ ){
    pm[ i ] = ss[ i ];
    if( i ) pm[ i ] = max( pm[ i ] , pm[ i - 1 ] );
  }
  for( int i = n - 1 ; i >= 0 ; i -- ){
    sm[ i ] = ps[ i ];
    if( i < n - 1 ) sm[ i ] = max( sm[ i ] , sm[ i + 1 ] );
  }
}
vector< pair<int,int> > itv;
void find_useful(){
  for( int i = 0 ; i < n ; i ++ ){
    if( vv[ i ].second > 0 ){
      itv.push_back( vv[ i ].first );
      continue;
    }else{
      int lft = vv[ i ].first.first;
      int rgt = vv[ i ].first.second;
      int lb = pm[ i ] - ss[ i ];
      int rb = sm[ i ] - ps[ i ];
      if( lb + rb >= rgt - lft + 1 ){
        itv.push_back( vv[ i ].first );
        continue;
      }
      if( lb > 0 )
        itv.push_back( { lft , lft + lb - 1 } );
      if( rb > 0 )
        itv.push_back( { rgt - rb + 1 , rgt } );
    }
  }
  size_t sz = 1;
  for( size_t i = 1 ; i < itv.size() ; i ++ )
    if( itv[ i ].first > itv[ sz - 1 ].second + 1 )
      itv[ sz ++ ] = itv[ i ];
    else
      itv[ sz - 1 ].second = itv[ i ].second;
  itv.resize( sz );
}
int cnt[ TM ] , pos , cur;
inline void add( int xi ){
  if( xi <= pos ) cur ++;
  cnt[ xi ] ++;
}
inline void sub( int xi ){
  if( xi <= pos ) cur --;
  cnt[ xi ] --;
}
inline int query( int xi ){
  while( pos < xi ){
    pos ++;
    cur += cnt[ pos ];
  }
  while( pos > xi ){
    cur -= cnt[ pos ];
    pos --;
  }
  return cur;
}
int sv[ TM ];
long long ans;
void find_ans(){
  for( auto _ : itv ){
    int lft = _.first , rgt = _.second;
    int psum = BS; pos = BS; cur = 0;
    add( BS );
    for( int i = lft ; i <= rgt ; i ++ ){
      psum += value( i );
      ans += query( psum - 1 );
      add( sv[ i - lft ] = psum );
    }
    for( int i = lft ; i <= rgt ; i ++ )
      sub( sv[ i - lft ] );
    sub( BS );
  }
}
void solve(){
  pre_build();
  find_useful();
  find_ans();
  cout << ans << endl;
}
int main(){
  init();
  solve();
}

更多问题,更详细题解可关注牛客竞赛区,一个刷题、比赛、分享的社区。
传送门:https://ac.nowcoder.com/acm/contest/discuss

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值